1、“.....。主减速器的齿轮类型按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动,双曲面齿轮式传动圆柱齿轮式传动又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动和蜗杆蜗轮式传动等形式。在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。在现代货车车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。螺旋锥齿轮如图所示主从动齿轮轴线交于点,交角都采用度。双曲面齿轮如图所示主从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有图螺旋锥齿轮与双曲面齿轮尺寸相同时,双曲面齿轮有更大的传动比。传动比定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。当传动比定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的离地间隙......”。
2、“.....所以相啮合轮齿的相当曲率半径比相应的螺旋锥齿轮当量曲率半径大,其结果是齿面建的接触应力降低。随偏移矩的不同,曲面齿轮与接触应力相当的螺旋锥齿轮比较,负荷可提高达。如果双曲面主动齿轮的螺旋角变大,则不产生根切的最少齿数可减少,所以可选用较少的齿数,这有利于大传动比的传动,这对于驱动桥的主减速比大于.的传动有其优越性。主减速器的减速形式主减速器的减速形式分为单级减速双级减速单级贯通双级贯通减速及轮边减速等。减速形式主要取决于由动力性经济性等整车性能所要求的主减速比的大小及驱动桥下的离地间隙驱动桥的数目及布置形式等。通常单极减速器用于主减速比.的各种中小型汽车上。如图所示,单级减速驱动车桥是驱动桥中结构最简单的种,制造工艺较简单,成本较低,是驱动桥的基本型,在货车车上占有重要地位。单级主减速器双级主减速器图主减速器如图所示,与单级主减速器相比,由于双级主减速器由两级齿轮减速组成......”。
3、“.....制造成本也显着增加,只有在主减速比较大.且采用单级主减速器不能满足既定的主减速比和离地间隙等要求是才采用。通常仅用在装在质量以上的重型汽车上。本次设计货车主减速比.,所以采用单级主减速器。主减速器主从动锥齿轮的支承形式及安装方法主减速器主动锥齿轮的支承形式及安装方式的选择现在汽车主减速器主动锥齿轮的支承形式有如下两种悬臂式悬臂式支承结构如图所示,其特点是在锥齿轮大端侧采用较长的轴径,其上安装两个圆锥滚子轴承。为了减小悬臂长度和增加两端的距离,以改善支承刚度,应使两轴载货,汽车,整体,总体,驱动,设计,毕业设计,全套,图纸目录摘要第章绪论.课题研究的目的意义.课题的国内外研究现状第章驱动桥的总体方案确定.驱动桥的种类结构和设计要求汽车车桥的种类驱动桥的种类驱动桥设计要求.设计车型主要参数.主减速器结构方案的确定主减速比的计算主减速器的齿轮类型主减速器的减速形式主减速器主从动锥齿轮的支承形式及安装方法.差速器结构方案的确定......”。
4、“.....桥壳形式的确定.本章小结第章主减速器设计.概述.主减速器齿轮参数的选择与强度计算主减速器计算载荷的确定主减速器齿轮参数的选择主减速器齿轮强度计算主减速器轴承计算.主减速器的润滑.主减速器的润滑.本章小结第章差速器设计.概述.对称式圆锥行星齿轮差速器原理.对称式圆锥行星齿轮差速器的结构.对称圆锥行星锥齿轮差速器的设计差速器齿轮的基本参数选择差速器齿轮的几何尺寸计算差速器齿轮的强度计算差速器齿轮的材料.本章小结第章半轴设计.概述.半轴的设计与计算全浮式半轴的计算载荷的确定半轴杆部直径的初选全浮式半轴强度计算全浮式半轴花键强度计算半轴材料与热处理.本章小结第章驱动桥桥壳的设计.概述.桥壳的受力分析及强度计算桥壳的静弯曲应力计算在不平路面冲击载荷作用下桥壳的强度汽车以最大牵引力行驶时的桥壳的强度计算汽车紧急制动时的桥壳强度计算.本章小结结论参考文献致谢附录附录外文文献中文翻译附录外文文献原文摘要轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要......”。
5、“.....而对于载货汽车显得尤为重要。设计出结构简单工作可靠造价低廉的驱动桥,能大大降低整车生产的总成本。本文首先确定主要部件的结构型式和主要设计参数,在分析驱动桥各部分结构形式发展过程及其以往形式的优缺点的基础上,确定了总体设计方案,采用传统设计方法对驱动桥各部件主减速器差速器半轴桥壳进行设计计算并完成校核。最后运用完成装配图和主要零件图的绘制。关键词驱动桥主减速器差速器半轴桥壳选题背景目的与意义汽车是改变世界的机器。汽车工业发展的百年历史中,已使世界发生了翻天覆地的变化。目前,全世界的汽车保有量已经超过.亿辆,我国民用汽车年就已达到万辆。中国的汽车工业起步的比较晚,迄今为止仅有多年的历史,但其已取得很大的成就。无论从产销量上还是从技术水准上来看,中国的汽车都在不断的前进和发展中,尤其是在近几年,其发展速度更是出乎人们的意料,很多人形容为“井喷”。年销售辆,年销售辆,年销售辆,年销售辆,年销售,年销售辆。以上为年轿车的销量......”。
6、“.....汽车工业已经成为国民的经济支柱产业,带动了许多相关企业事业,包括钢铁石油橡胶塑料机床道路汽车销售售后服务运输交通管理等的发展。伴随着汽车工业的发展,使用范围的不断扩大,对于各部件的研发与制造都提出了更高的要求,汽车车桥是汽车的重要大总成,其结构型式和设计参数对汽车的可靠性和操纵性稳定性等有直接的影响。驱动桥是现代汽车重要的总成之,它位于传动系末端,其功用为增扭降速改变转矩的传动方向,并将转矩合理分配给左右驱动车轮。所以轴承符合使用要求。对于从动齿轮的轴承,的径向力已知.,.,.,所以,轴承的径向力.轴承的径向力.根据尺寸,轴承,均采用,其额定动载荷为.,.对于轴承,轴向力.,径向力.,并且.,.,.所以.所以轴承满足使用要求。对于轴承,轴向力.,径向力.,并且.,.,.。所以.所以轴承满足使用要求。.主减速器齿轮材料及热处理驱动桥锥齿轮的工作条件是相当恶劣的,其损坏形式主要有齿轮根部弯曲折断齿面疲劳点蚀剥落磨损和擦伤等。在此......”。
7、“......主减速器的润滑主加速器及差速器的齿轮轴承以及其他摩擦表面均需润滑,为此,通常是在从动齿轮的前端靠近主动齿轮处的主减速壳的内壁上设专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过近油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环。.本章小结本章根据所给参数确定了主减速器计算载荷并根据有关的机械设计机械制造的标准对齿轮参数进行合理的选择,最后对螺旋锥齿轮的相关几何尺寸参数进行列表整理,并且对主动从动齿轮进行强度校核。对主减速器齿轮的材料及热处理,主减速器的润滑给以说明。第章差速器设计.概述汽车在行使过程中,左右车轮在同时间内所滚过的路程往往是不相等的,左右两轮胎内的气压不等胎面磨损不均匀两车轮上的负荷不均匀而引起车轮滚动半径不相等。为此在驱动桥的左右车轮间都装有轮间差速器。......”。
8、“.....差速器壳与行星齿轮轴连成体,形成行星架。因为它又与主减速器从动齿轮固连在起,固为主动件,设其角速度为半轴齿轮和为从动件,其角速度为和。两点分别为行星齿轮与半轴齿轮和的啮合点。图.差速器差速原理当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同半径上的三点的圆周速度都相等图.,其值为。于是,即差速器不起作用,而半轴角速度等于差速器壳的角速度。即若角速度以每分钟转数式为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式。.对称式圆锥行星齿轮差速器的结构普通的对称式圆锥齿轮差速器由差速器左右壳,两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成。由于其具有结构简单工作平稳制造方便用于公路汽车上也很可靠等优点,故广泛用于各类公路车辆上。项中,的意思为,用第项的计算数据加上第项的计算数据乘以第项的计算数据。第项求得地齿线半径与第项选定的刀盘半径之差不应超过值的。否则需重新试计算第项至第项。如果,则需要将第项的的数值减小......”。
9、“.....并将结果写在栏内第二列。若,则应增大值。修正量是根据曲率半径的差值来选取的。若无特殊考虑,则第二次试算时可将改大。如果第二次试算得出的新值仍不接近,就要进行的三次试算,通常也是最后次试算,可用下式求式中下标分别表示第二第二和第三次计算得结果。表主减速器齿轮的几何尺寸计算用表序号计算公式计算数据注释小齿轮,应不小于,载货汽车大齿轮齿面宽.大齿轮分度圆直径.刀盘名义半径.小齿轮螺旋角预选值.大齿轮在齿面中点处的分度圆半径.小齿轮在齿面宽中点处的分度圆半径.齿轮收缩系数小齿轮节锥角小齿轮中点螺旋角大齿轮节锥角承圆锥滚子向外。悬臂式支承结构简单,支承刚度较差,多用于传递转巨较小的轿车轻型货车的单级主减速器及许多双级主减速器中。图锥齿轮悬臂式支承骑马式骑马式支承结构如图所示,其特点是在锥齿轮的两端均有轴承支承。图.主动锥齿轮骑马式支承本次设计货车为轻型货车,所以采用悬臂式。主减速器从动锥齿轮的支承形式及安装方式的选择从动锥齿轮只有跨置式种支撑形式如图所示......”。
A0-驱动桥装配图.dwg
(CAD图纸)
A2-从动齿轮.dwg
(CAD图纸)
A2-主动锥齿轮.dwg
(CAD图纸)
目录.doc
汽车整体式驱动桥设计正文.doc
任务书.doc
外文翻译--驱动桥和差速器.doc
摘要.doc