1、“.....到市院年来我时刻按照“敬建功之业,强素质之精”的个人目标,来实践我的人生。我实现了“传统没丢,干劲没减,作风没散”的军队光荣传统,工作中多次得到领导和同志们的赞叹。我竞聘干部科副职,有如下优势和条件首先,我有良好的政治素养,扎实的工作作风。工作中政治立场坚定,有较高的思想政治觉悟。我在部队任过多职,在机关担任过干事军务参谋和团政治处主任,有定的理论和文字功底,秉公办事,严守工作纪律。其次,二十余年的军旅生涯造就了我,有强烈的事业心和高度的责任感,能以大局为重,正确对待个人得失。第三,有较强的适应能力。参加工作以来,我的工作岗位多次变换,每次走上新的岗位,面临新的挑战,我都能积极发挥主观能动性,很快的适应新的工作,干出好的成绩。第四,有团结敬业积极向上的工作热情。我身体健康,精力充沛。工作中服从领导......”。
2、“.....有定的理论和文字功底,秉公办事,严守工作纪律。其次,二十余年的军旅生涯造就了我,有强烈的事业心和高度的责任感,能以大局为重,正确对待个人得失。第三,有较强的适应能力。参加工作以来,我的工作岗位多次变换,每次走上新的岗位,面临新的挑战,我都能积极发挥主观能动性,很快的适应新的工作,干出好的成绩。第四,有团结敬业积极向上的工作热情。我身体健康,精力充沛。工作中服从领导,团结同事,尊重老同志,能够积极参加院里组织的各项活动。文秘版权所有我若得到领导和同志们的信任竞聘成功,我定会摆正位置,当好配角我将尊重正职的核心地位,维护正职的威信。工作中树牢“上为党组分忧下为干警服务”的思想。实现从原来的“领导交办,办就办好”向“怎样去办,怎样办好”的思维方式转变......”。
3、“.....目标上同向,行动上同步。营造个“内图同心协力,外谋合作支持”的良好氛围。协助正职认真落实各项工作任务。具体体现在“抓好两个学习,实现三个飞跃。”两个学习是抓好在职研究生学习。二抓好书记员的在职培训学习,为他们创造良好的学习环境,尽早通过司考。三个飞跃是完成好在编定岗工作,最大限度的发挥优长,调动其积极因素。二尽快缩短助检员向检察员的过渡时限,让他们敢说话,抢重担,挑大梁。三攻坚好梯次工程,把握时机,选准选好科副县人员级别晋升工作,既要考虑到老同志的辛劳,还要看到年轻干警所付出的汗水。作为干部部门要让老实人实干家“受苦受累不受气,吃糠吃菜不吃亏,”给他们更多的实惠。领导和同志们给我次机会,我将还您十分精彩......”。
4、“.....非常感谢领导和同志们对我的信任与支持,给了我这次学习锻炼和提高的机会,我作为名检察员能参加这次竞争上岗而感到自豪。我叫关祝,岁,年月入伍,年月考入西安政治学院,法律本科学历,毕业后分别在沈阳军区守备第师和沈后第分部服役,历任教导队教员干事军务参谋政治教导员团政治处主任等职。曾荣立三等功三次,多次受到部队嘉奖。年我申请转业分配至我院反贪局侦查处工作,不久就参加了省委“专案组”,年在正副处长带领下,我们又侦查了建院以来涉嫌犯罪金额之大,行贿人员之多,电力系统受贿大案。年月我又参加了省委“专案组”。办案中能够廉洁自律,依法办事,严格遵守办案纪律,积极主动配合主办人员工作,认真做好各种笔录,为审判被告人提供了法律证据。到市院年来我时刻按照“敬建功之业,强素质之精”的个人目标,来实践我的人生......”。
5、“.....干劲没减,作风没散”的军队光荣传统,工作中多次得到领导和同志们的赞叹。我竞聘干部科副职,有如下优势和条件首先,我有良好的政治素养,扎实的工作作风。工作中政治立场坚定,有较高的思想政治觉悟。我在部队任过多职,在机关担任过干事军务参谋和团政治处主任,有定的理论和文字功底,秉公办事,严守工作纪律。其次,二十余年的军旅生涯造就了我,有强烈的事业心和高度的责任感,能以大局为重,正确对待个人得失。第三,有较强的适应能力。参加工作以来,我的工作岗位多次变换,每次走上新的岗位,面临新的挑战,我都能积极发挥主观能动性,很快的适应新的工作,干出好的成绩。第四,有团结敬业积极向上的工作热情。我身体健康,精力充沛。轨迹探求提供方法的准备......”。
6、“.....它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范数学的文化价值解析几何的发明是变量数学的第个里程碑,也是近代数学崛起的两大标志之,是较为完整和典型的重大数学创新史例解析几何创始人特别是笛卡儿的事迹和精神对科学真理和方法的追求质疑的科学精神等都是富有启发性和激励性的教育材料可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析整理,写出研究报告学情分析我所授课班级的学生数学基础比较好,思维活跃,在曲线上点的几何表示形式转化为代数表示形式。在这转化过程中,学生通过积极参与勇于探索的学习方式,让学生的学习过程成为教师指导下的再创造,这也正是建构主义理论的本质要求遵循学生认知规律,尊重学生个体差异,立足教材......”。
7、“.....体现理论联系实际循序渐进和因材施教的教学原则,让不同层次的学生得到不同层度的发展通过激发兴趣,强调自主探索与合作交流,让学生逐步地从学会走向会学,由被动走向主动,由课堂走向社会,为学生的终身学习和终身发展奠定良好的基础,也是当前新课程所追求的基本理念四教学过程教学设计根据本课教学内容几何特性外化的特点,抓住形成轨迹的动点具备的几何条件,运用坐标化的手段及等价转化与数形结合的思想方法,突破难点,突出重点本课的教学设计思路是创设情景从感性的轨迹图形认识,到解决生活上的实例,激发学生的求知欲望,抓住学生迫切试的认知心理,自然引入坐标法的意义及曲线方程的求法例题探求例题体现知识的承前启后通过例题的呈现,学生借助已有的知识经验,自主探求获得问题的求解,在教师的引导下......”。
8、“.....建系的开放性,对学生是种挑战,也是种创造两个例题由浅入深,循序渐进,体现因材施教至此,学生已能初步了解求曲线方程的般方法和步骤了归纳步骤学生亲身经历求曲线方程的过程,让学生归纳用自己的语言表述求解的步骤,体现从“特殊般”认知规律,逐步实现教学目标变式练习通过对例题的变式,由学生求解回答变式后的含义,深化对认知结构的理解,初步体会数学的理性与严谨,逐步养成质疑与反思的习惯反馈练习利用学生探索而发展来的认知水平,运用获得的知识解决情景创设中的实际问题,方面可以考察学生运用所学数学知识解决实际问题的意识和能力另方面是学生思维的自然顺应,自然释放......”。
9、“.....“曲线与方程”这小节思想性较强,约需三课时,第课时介绍曲线与方程的概念第二课时讲曲线方程的求法第三课时侧重对所求方程的检验本课为第二课时主要内容有解析几何与坐标法求曲线方程的方法直译法步骤及例题探求本课地位和作用承前启后,数形结合曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节“曲线”与“方程”是点的轨迹的两种表现形式“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题体现了坐标法的本质代数化处理几何问题,是数形结合的典范后继性可探究性求曲线方程实质上就是求曲线上任意点,横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。