1、“.....由于使用式来计算个体的,在式中不仅考虑了种群个体之间的拥挤情况,而且还考虑了种群个体在不同维目标上拥挤度距离的差异情况。这有利于维护在不同维目标上拥挤度距离差异较大的前沿的分布性。算法流程算法的基本流程是首先,随机产生种群规模大小为的父代种群,然后由父代种群产生子代种群,其种群规模大小同样为。将两个种群混合在起,形成了种群规模大小为叉参数作不同取值时的最终结果。图不同交叉参数下的最终优上述快速非支配排序算法步骤的和需要次计算。于是,整个迭代过程的计算复杂度最大是。这样,整个快速非支配排序算法的计算复杂度就是,根据上述快速非支配排序算法的步骤,相应的伪代码为对于种群第章算法拥挤度拥挤度的确定在原来的算法中,采用共享的小生境技术确保证种群的多样性,但这需要由决策者指定共享参数的值。为了克服算法中的这种不足,中引用了拥挤度的概念拥挤度表示在种群中给定点的周围个体的密度,用表示,直观上用个体周围包含个体但不包含其余个体的最大长方形的长来表示,具体如图所示。图个体的拥挤度在带精英策略的非支配排序遗传算法中......”。
2、“.....其计算步骤如下燕山大学本科生毕业设计论文每个点的拥挤度置为针对每个优化目标,对种群进行非支配排序,令边界上的两个个体的拥挤度为无穷大,即对种群中其他个体的拥挤度进行计算在上式中,表示点的拥挤度,表示点第个目标函数的函数值,表示点的第个目标函数的函数值。拥挤度比较算子经过前面的快速非支配排序以及拥挤度计算之后,种群中的每个个体都拥有如下两个属性非支配排序决定的非支配序拥挤度根据这两个属性,可以定义拥挤度比较算子个体与另个个体进行比较,只要下面任意个条件成立,则个体获胜。若个体所处的非支配层优于个体所处的非支配层,即。若种群中两个个体有相同的等级处在相同的非支配层,且个体的拥挤距离大于个体的拥挤距离,即且。条件用来确保被选择的个体属于在种群中比较优秀的非劣等级。条件是根据它们的拥挤距离来选择处在相同的非支配层的两个个体,位于较不拥挤区域的个体有较大的拥挤度会被选择。根据这两个条件,选出种群中胜出的个体进入下个操作。精英策略算法引入了精英策略,以防止在种群的进化过程中优秀个体的流失......”。
3、“.....能够有较好地避免父代种群中优秀个体的流失。精英策略的执行步骤如图所示第章算法拥挤度比较算子非支配排序优越论文小为,并且有。那么需要从当前的非支配集中除去个个体,这些被去除的个体不是随机选取的,而是根据拥挤度比较算子选择性地去除优秀度不够的个体。基于拥挤度距离来保持个体解的多样性策略就是根据式,计算种群中个非支配个体的拥挤度距离,然后对这个个体按拥挤度距离升序排序,最后将个拥挤度距离最小的个体次性去除,从而使新父代种群规模大小维持不变。显然,这种维持多样性的策略过于粗糙,使得个体解的分布性较差。由于传统的拥挤度距离的分布性保持策略存在如下两个缺陷如图实心黑点表示非支配个体图个体的拥挤度距离由于个体的拥挤度距离都比较小,若次性去除所有拥挤度距离较小的个体,则会出现个体与之间个体的缺失,从而影响解的分布性。对于个体来说,由于其在其中维目标上的差值很大,而在另维目标上差值却很小,这使得的拥挤度距离也比较小。而对于个体,由于其在各个维目标上的差值都相差不是很大,使得的拥挤度距离也比较第章算法大,此时传统算法会误认为的分布性比要好,但事实上,的分布性要比好。由此可见......”。
4、“.....个体的拥挤度距离是不变的。也就是说,在次种群维护中,种群中个体的拥挤度距离只计算次。针对上述拥挤度距离的两个缺陷,提出以下相应的解决方法。对于缺陷,可以在种群维护过程中,每去除个个体后重新计算种群中剩余个体的拥挤度距离。对于缺陷,个体的新拥挤度距离可以根据下式进行计算其中,是传统的拥挤度距离,可根据式计算可以根据下式得出表示个体在各个维目标上其相邻个体的拥挤度距离的方差,它能反映出各个维目标拥挤度距离的差异程度。例如,对于图中个体与来说,个体的明显大于的。如此,式中定义的新拥挤度距离计算公式,可以使种群中类似个体的解个体,即在不同维目标上拥挤度距离差异程度较大的个体,在种群维护过程中有更多的机会得到保留。下面讨论基于新拥挤度距离保持解的多样性策略的具体描述。若种群规模大小为,当前非支配集的大小为,且,则根据从中去除个个体的具体描述如下根据式计算中每个个体的动态聚集距离。对中的个体按新拥挤度距离进行升序排序。将中拥挤度距离最小的个体从中去除。若,则结束种群维护否则返回步骤,继续执行。由以上可以看出......”。
5、“.....在去除个个体后,重新计算中个体的。这样就可以避免次性去除过多个体而造成解个体在区域的缺失,最终可以得到分布更为均匀度不够,淘汰图精英策略的执行步骤首先,要将第代产生的子代种群与父代种群合并在起,组成种群规模大小为的新种群。然后将种群进行非支配排序,求出系列非支配集并且计算每个个体的拥挤度。因为父代和子代的个体都包含在种群中,所以经过非支配排序后的非支配集所包含个体是整个种群中最好的个体集合,故先将放到新的父代种群中。若此时种群的规模小于,那么需要继续向中填加下级的非支配集,直到添加到非支配集时,种群的大小超出,则对中的每个个体使用拥挤度比较算子,取前个个体,使种群的规模达到。然后通过遗传算子,如选择交叉变异,来产生新的子代种群。在算法中,通过引入拥挤度比较算子来确保非劣解的多样性。由于比较的是种群中所有个体的拥挤度,所以在这过程中没有依赖在算法中出现的共享参数。算法的拥挤度距离公式改进在传统的算法中,如果种群规模大小为......”。
6、“.....在面向对象范例种还有对对象的运算。对象同抽象数据类型很相似,联系着数据和运算。面向对象范例具有三种主要特性,第种,压缩,其机制是为了实施数据抽象。第二种,继承。继承允许从已存在的对象中创建新的对象。这个新创建的对象是原对象的具体说明。新对象的不同在于只需要提供方法或数据。当个对象从另个对象中被创建或取得时,就说新对象继承了它父对象的方法和数据,并增加了些新的描述和说明。面向对象的第三种特性是多态。多态可以使不同类型的的对象对相同的信息执行相同的操作。例如,我们有部分对象它们可以执行类操作,但是只有在运行时我们才知道对象的类型。面向对象语言包含的机毕业设计论文外文资料翻译制确保了每类信息传递给正确的对象。压缩,继承和多态被认为是面向对象程序的基本特征,所有的面向对象程序语言必须提供这些特征。般来说,语言通过不同的途径支持这些特征的实现。,和这些程序语言都是面向对象语言的例子,它们都可以提供对压缩,继承和多态的支持。构建个面向对象的程序需要决定解决问题所需的对象。这些对象被用来构建计算,定义软件系统的操作运行。信息的传递是对象间最基本的相互作用机制......”。
7、“.....以便通知对象运行下个操作。对象需要负责维护它所相关的数据的状态。只有对象本身才可以改变它内部的数据值。对象本身可以完全的调用它的子对象。个对象的执行是个循环递归的过程,当定义这个对象和方法的初始值是,可以跳出这个循环递归的过程。这时,这个方法和数据所组成的元素可以使用程序语言所提供的基本的构造函数。学习面向对象范例最重要的点是如何改变我们思考建造软件体系的思路。系统被认为是由多个单独立的个体组成,其中每个个体只负责对其自身的操作的运行。每个对象的设置和运行都是自身所包含的。由于对象常常模仿真实世界的个体的概念,因而这样的个模型推动了软件方面的设计以及后来的实行。设计个系统使用面向对象的范例,从而使得系统的操作和运行更类似于真实世界中所对应的真实个体。面向对象的特征压缩继承了的发展,并且定义的新的方便的数据类型。个类就像的结构,但不同的是同时包括了数据和方法。除此之外,还提供了类中各个成员访问权限的不同,以此方便的控制即使是在不同的类,也可以访问类中的成员。重复的调用个抽象的数据可以对用户隐藏对个数据对象的操作细节。用户只可以通过个公共的接口来访问这个对象......”。
8、“.....又包括私有的部分。公有的部分提供给用户关于这个类的接口,私有的部分只有构造这个类的函数才可以访问。毕业设计论文外文资料,类运算,选择运算不能重载。在这后两点的面向对象分析中,我们可以看到很好的支持了面向对象的范例。五分钟搞定字毕业论文外文翻译,你想要的工具都在这里,在科研过程中阅读翻译外文文献是个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器翻译频道金山词霸完整版本和翻译设计的前沿。由于使用式来计算个体的,在式中不仅考虑了种群个体之间的拥挤情况,而且还考虑了种群个体在不同维目标上拥挤度距离的差异情况。这有利于维护在不同维目标上拥挤度距离差异较大的前沿的分布性。算法流程算法的基本流程是首先,随机产生种群规模大小为的父代种群,然后由父代种群产生子代种群,其种群规模大小同样为。将两个种群混合在起,形成了种群规模大小为叉参数作不同取值时的最终结果。图不同交叉参数下的最终优上述快速非支配排序算法步骤的和需要次计算。于是,整个迭代过程的计算复杂度最大是。这样......”。
9、“.....根据上述快速非支配排序算法的步骤,相应的伪代码为对于种群第章算法拥挤度拥挤度的确定在原来的算法中,采用共享的小生境技术确保证种群的多样性,但这需要由决策者指定共享参数的值。为了克服算法中的这种不足,中引用了拥挤度的概念拥挤度表示在种群中给定点的周围个体的密度,用表示,直观上用个体周围包含个体但不包含其余个体的最大长方形的长来表示,具体如图所示。图个体的拥挤度在带精英策略的非支配排序遗传算法中,拥挤度的计算是确保种群多样性的个重要因素,其计算步骤如下燕山大学本科生毕业设计论文每个点的拥挤度置为针对每个优化目标,对种群进行非支配排序,令边界上的两个个体的拥挤度为无穷大,即对种群中其他个体的拥挤度进行计算在上式中,表示点的拥挤度,表示点第个目标函数的函数值,表示点的第个目标函数的函数值。拥挤度比较算子经过前面的快速非支配排序以及拥挤度计算之后,种群中的每个个体都拥有如下两个属性非支配排序决定的非支配序拥挤度根据这两个属性,可以定义拥挤度比较算子个体与另个个体进行比较......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。