毕业设计的前沿。由于使用式来计算个体的,在式中不仅考虑了种群个体之间的拥挤情况,而且还考虑了种群个体在不同维目标上拥挤度距离的差异情况。这有利于维护在不同维目标上拥挤度距离差异较大的前沿的分布性。算法流程算法的基本流程是首先,随机产生种群规模大小为的父代种群,然后由父代种群产生子代种群,其种群规模大小同样为。将两个种群混合在起,形成了种群规模大小为叉参数作不同取值时的最终结果。图不同交叉参数下的最终优上述快速非支配排序算法步骤的和需要次计算。于是,整个迭代过程的计算复杂度最大是。这样,整个快速非支配排序算法的计算复杂度就是,根据上述快速非支配排序算法的步骤,相应的伪代码为对于种群第章算法拥挤度拥挤度的确定在原来的算法中,采用共享的小生境技术确保证种群的多样性,但这需要由决策者指定共享参数的值。为了克服算法中的这种不足,中引用了拥挤度的概念拥挤度表示在种群中给定点的周围个体的密度,用表示,直观上用个体周围包含个体但不包含其余个体的最大长方形的长来表示,具体如图所示。图个体的拥挤度在带精英策略的非支配排序遗传算法中,拥挤度的计算是确保种群多样性的个重要因素,其计算步骤如下燕山大学本科生毕业设计论文每个点的拥挤度置为针对每个优化目标,对种群进行非支配排序,令边界上的两个个体的拥挤度为无穷大,即对种群中其他个体的拥挤度进行计算在上式中,表示点的拥挤度,表示点第个目标函数的函数值,表示点的第个目标函数的函数值。拥挤度比较算子经过前面的快速非支配排序以及拥挤度计算之后,种群中的每个个体都拥有如下两个属性非支配排序决定的非支配序拥挤度根据这两个属性,可以定义拥挤度比较算子个体与另个个体进行比较,只要下面任意个条件成立,则个体获胜。若个体所处的非支配层优于个体所处的非支配层,即。若种群中两个个体有相同的等级处在相同的非支配层,且个体的拥挤距离大于个体的拥挤距离,即且。条件用来确保被选择的个体属于在种群中比较优秀的非劣等级。条件是根据它们的拥挤距离来选择处在相同的非支配层的两个个体,位于较不拥挤区域的个体有较大的拥挤度会被选择。根据这两个条件,选出种群中胜出的个体进入下个操作。精英策略算法引入了精英策略,以防止在种群的进化过程中优秀个体的流失,通过将父代种群与其产生的子代种群混合后进行非支配排序的方法,能够有较好地避免父代种群中优秀个体的流失。精英策略的执行步骤如图所示第章算法拥挤度比较算子非支配排序优越论文小为,并且有。那么需要从当前的非支配集中除去个个体,这些被去除的个体不是随机选取的,而是根据拥挤度比较算子选择性地去除优秀度不够的个体。基于拥挤度距离来保持个体解的多样性策略就是根据式,计算种群中个非支配个体的拥挤度距离,然后对这个个体按拥挤度距离升序排序,最后将个拥挤度距离最小的个体次性去除,从而使新父代种群规模大小维持不变。显然,这种维持多样性的策略过于粗糙,使得个体解的分布性较差。由于传统的拥挤度距离的分布性保持策略存在如下两个缺陷如图实心黑点表示非支配个体图个体的拥挤度距离由于个体的拥挤度距离都比较小,若次性去除所有拥挤度距离较小的个体,则会出现个体与之间个体的缺失,从而影响解的分布性。对于个体来说,由于其在其中维目标上的差值很大,而在另维目标上差值却很小,这使得的拥挤度距离也比较小。而对于个体,由于其在各个维目标上的差值都相差不是很大,使得的拥挤度距离也比较第章算法大,此时传统算法会误认为的分布性比要好,但事实上,的分布性要比好。由此可见,基于传统的拥挤度距离来保持解的分布性策略中,个体的拥挤度距离是不变的。也就是说,在次种群维护中,种群中个体的拥挤度距离只计算次。针对上述拥挤度距离的两个缺陷,提出以下相应的解决方法。对于缺陷,可以在种群维护过程中,每去除个个体后重新计算种群中剩余个体的拥挤度距离。对于缺陷,个体的新拥挤度距离可以根据下式进行计算其中,是传统的拥挤度距离,可根据式计算可以根据下式得出表示个体在各个维目标上其相邻个体的拥挤度距离的方差,它能反映出各个维目标拥挤度距离的差异程度。例如,对于图中个体与来说,个体的明显大于的。如此,式中定义的新拥挤度距离计算公式,可以使种群中类似个体的解个体,即在不同维目标上拥挤度距离差异程度较大的个体,在种群维护过程中有更多的机会得到保留。下面讨论基于新拥挤度距离保持解的多样性策略的具体描述。若种群规模大小为,当前非支配集的大小为,且,则根据从中去除个个体的具体描述如下根据式计算中每个个体的动态聚集距离。对中的个体按新拥挤度距离进行升序排序。将中拥挤度距离最小的个体从中去除。若,则结束种群维护否则返回步骤,继续执行。由以上可以看出,利用经过改进的拥挤度距离计算公式来维护种群时表现出两个重要特点燕山大学本科生毕业设计论文每次只去除当前非支配集中最小的个个体。在去除个个体后,重新计算中个体的。这样就可以避免次性去除过多个体而造成解个体在区域的缺失,最终可以得到分布更为均匀度不够,淘汰图精英策略的执行步骤首先,要将第代产生的子代种群与父代种群合并在起,组成种群规模大小为的新种群。然后将种群进行非支配排序,求出系列非支配集并且计算每个个体的拥挤度。因为父代和子代的个体都包含在种群中,所以经过非支配排序后的非支配集所包含个体是整个种群中最好的个体集合,故先将放到新的父代种群中。若此时种群的规模小于,那么需要继续向中填加下级的非支配集,直到添加到非支配集时,种群的大小超出,则对中的每个个体使用拥挤度比较算子,取前个个体,使种群的规模达到。然后通过遗传算子,如选择交叉变异,来产生新的子代种群。在算法中,通过引入拥挤度比较算子来确保非劣解的多样性。由于比较的是种群中所有个体的拥挤度,所以在这过程中没有依赖在算法中出现的共享参数。算法的拥挤度距离公式改进在传统的算法中,如果种群规模大小为,当前非支配集大燕山大学本科生化结大部分还会具有外存。同时集成诸如通讯接口计时器,实时时钟等外围设备。而现在最强大的单片机系统甚至可以将声音图像网络复杂的输入输出系统集成在块芯片上。单片机也被称为微处理器,是因为它最早被用在工业控制领域。单片机由芯片内仅有的专用处理器发展而来。最早的设计理念是通过将大量外围设备和集成在个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。的是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能卡,民用豪华轿车的安全保障系统,录像机摄像机全自动洗衣机的控制,以及程控玩具电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人智能仪表医疗器械了。纵观单片机的发展过程,可以预示单片机的发展趋势,大致有低功耗化系列的推出时的功耗达,而现在的单片机普遍都在左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了互补金属氧化物半导体工艺。象就采用了即高密度金属氧化物半导体工艺和互补高密度金属氧化物半导体工艺。虽然功耗较低,但由于其物理特征决定其工作速度不够高,而则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。所以这种工艺将是今后段时期单片机发展的主要途径。微型单片化现在常规的单片机普遍都是将中央处理器随机存取数据存储只读程序存储器并行和串行通信接口,中断系统定时电路时钟电路集成在块单的芯片上,增强型的单片机集成了如转换器脉宽调制电路看门狗有些单片机将液晶驱动电路都集成在单的芯片上,这样单片机包含的单元电路就更多,功能就越强大。甚至单片机厂商还可以根据用户的要求量身定做,制造出具有自己特色的单片机芯片。主流与多品种共存虽然单片机的品种繁多,各具特色,但仍以为核心的单片机占主流,兼容其结构和指令系统的有公司的产品,公司的产品和中国台湾的系列单片机。所以为核心的单片机占据了半壁江山。而公司的精简指令集也有着强劲的发展势头,中国台湾的公司近年的单片机产量与日俱增,与其低价质优的优势,占据定的市场分额。此外还有公司的产品,日本几大公司西安邮电大学本科毕业论文的专用单片机。在定的时期内,这种情形将得以延续,将不存在个单片机统天下的垄断局面,走的是依存互补,相辅相成共同发展的道路。是种带字节闪烁可编程可擦除只读存储器的低电压,高性能位微处理器,俗称单片机。是种带字节闪烁可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除次。该器件采用高密度非易失存储器制造技术制造,与工业标准的指令集和输出管脚相兼容。由于将多功能位和闪烁存储器组合在单个芯片中,的是种高效微控制器,是它的种精简版本。单片机为很多嵌入式控制系统提供了种灵活性高且价廉的方案。主要性能与兼容字节可编程闪烁存储器毕业设计的前沿。由于使用式来计算个体的,在式中不仅考虑了种群个体之间的拥挤情况,而且还考虑了种群个体在不同维目标上拥挤度距离的差异情况。这有利于维护在不同维目标上拥挤度距离差异较大的前沿的分布性。算法流程算法的基本流程是首先,随机产生种群规模大小为的父代种群,然后由父代种群产生子代种群,其种群规模大小同样为。将两个种群混合在起,形成了种群规模大小为叉参数作不同取值时的最终结果。图不同交叉参数下的最终优上述快速非支配排序算法步骤的和需要次计算。于是,整个迭代过程的计算复杂度最大是。这样,整个快速非支配排序算法的计算复杂度就是,根据上述快速非支配排序算法的步骤,相应的伪代码为对于种群第章算法拥挤度拥挤度的确定在原来的算法中,采用共享的小生境技术确保证种群的多样性,但这需要由决策者指定共享参数的值。为了克服算法中的这种不足,中引用了拥挤度的概念拥挤度表示在种群中给定点的周围个体的密度,用表示,直观上用个体周围包含个体但不包含其余个体的最大长方形的长来表示,具体如图所示。图个体的拥挤度在带精英策略的非支配排序遗传算法中,拥挤度的计算是确保种群多样性的个重要因素,其计算步骤如下燕山大学本科生毕业设计论文每个点的拥挤度置为针对每个优化目标,对种群进行非支配排序,令边界上的两个个体的拥挤度为无穷大,即对种群中其他个体的拥挤度进行计算在上式中,表示点的拥挤度,表示点第个目标函数的函数值,表示点的第个目标函数的函数值。拥挤度比较算子经过前面的快速非支配排序以及拥挤度计算之后,种群中的每个个体都拥有如下两个属性非支配排序决定的非支配序拥挤度根据这两个属性,可以定义拥挤度比较算子个体与另个个体进行比较,只要下面任意个条件成立,则个体获胜。若个体所处的非支配层优于个体所处的非支配层,即。若种群中两个个体有相同的等级处在相同的非支配层,且个体的拥挤距离大于个体的拥挤距离,即且。条件用来确保被选择的个体属于在种群中比较优秀的非劣等级。条件是根据它们的拥挤距离来选择处在相同的非支配层的两个个体,位于较不拥挤区域的个体有较大的拥挤度会被选择。根据这两个条件,选出种群中胜出的个体进入下个操作。精英策略算法引入了精英策略,以防止在种群的进化过程中优秀个体的流失,通过将父代种群与其产生的子代种群混合后进行非支配排序的方法,能够有较好地避免父代种群中优秀个体的流失。精英策略的执行步骤如图所示第章算法拥挤度比较算子非支配排序优越论文小为,并且有。那么需要从当前的非支配集中除去个个体,这些被去除的个体不是随机选取的,而是根据拥挤度比较算子选择性地去除优秀度不够的个体。基于拥挤度距离来保持个体解的多样性策略就是根据式,计算种群中个非支配个体的拥挤度距离,然后对这个个体按拥挤度距离升序排序,最后将个拥挤度距离最小的个体次性去除,从而使新父代种群规模大小维持不变。显然,这种维持多样性的策略过于粗糙,使得个体解的分布
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。