1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....从而选择合理的训练样本。网络的设计本文依据人工神经网络来建模,根据网络来预测点负荷。如图预测点负荷的网络。图预测点负荷的网络网络是系统预测中应用特别广泛的种网络形式,因此,本文采用网络对负荷值进行预报。根据网络来设计网络,般的预测问题都可以通过单隐层的网络实现。本文由于输入向量有个元素,所以网络输入层的神经元有个,经过多次训练网络中间层的神经元可以取个。而输出向量有个,所以输出层中的神经元应该有个。网络中间层的神经元传输函数采用型正切函数,输出层神经元传递函数采用型对数函数。这是因为函数的输出位于区间,中,正好满足网络输出的要求。利用以下代码创建个满足上述要求的网络其中,变量用于规定输入向量的最大值最小值,规定了网络输入输出层隐层输入层向量的最大值为,最小值为。表示设定网络的训练函数为,它采用算法进行网络学习。网络训练计算出预测日点的归化系数网络经过训练后才可以用于电力负荷预测的实际应用。考虑到网络的结构比较复杂,神经元个数比较多,需要适当增大训练次数和学习速率。训练参数的设定如表所示。表训练参数训练次数训练目标学习速率训练代码如下为输入向量......”。
2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....同时,加导向钻具使粗径钻头长度左右,以达到直孔的目的。距孔口孔段不破壁,防止塌孔。破壁至距孔底左右时用优质轻泥浆替换井孔内含砂量大的泥浆,换至泥浆粘度,泥浆含沙量小于。准备井管按设计备齐井管,并检查井管质量,不符合设计要求的井管不得下入孔内。井管按下管顺序排列整齐,丈量准确,详实记录。扶正器为了保证井管周围填砾厚度均匀,在滤水管上中下部位焊绑扎接组弓型扶正器,每组扶正器不少于四片,扶正器支承厚度,每组间距左右。下管本次勘查设计孔深,井管重量约,钻机提升能力,因此,采用提吊下管法。下管注意事项操作要稳,下管受阻时不得猛墩。下管过程中,孔口要做好围护工作,渗回到含水层中。水位的观测,在同个试验中应采用同方法和工具。抽水试验孔的水位测量应读到厘米。出水量的测量,采用堰箱,水位的测量应读到毫米。做抽水试验时,各次抽水落程的水泵吸水管口的安装深度应相同。抽水落程次数应根据试验目的确定,宜进行次。其中最大下降值可接近井的设计动水位,其余两次下降值宜分别为最大下降值的和。抽水试验的稳定水位,应符合在抽水稳定时间内,钻孔出水量反映到动水位变化时只在的范围内波动......”。
3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....本文介绍的基于神经网络的预测方法,在综合考虑天气情况历史负荷和日类型等对未来负荷影响的因素后,使用了神经网络的非线性拟合等功能,取得了较好的负荷预测效果。如表休息日预测结果对照所示,如表工作日预测结果对照所示。表休息日预测结果对照预测时段实际值预测值误差从表可见,个点的误差的绝对百分误差小于,最小绝对百分误差为,最大绝对百分误差为,平均绝对百分误差为,表明预测取得了较满意的结果。表工作日预测结果对照预测时段实际值预测值误差从表可见,个点的误差的绝对百分误差小于,最小绝对百分误差为输入信号。对于神经网络,这是个仍有待于进步研究的问题。电力系统短期负荷预测建模及实现负荷预测对电力系统控制运行和计划都有着重要的意义。电力系统负荷变化受多方面的影响,方面,负荷变化存在着由未知不确定的因素引起的随机的波动另方面,又具有周期变化的规律性,这也使得负荷曲线具有相似性。同时,由于受天气节假日等特殊情况的影响,又使负荷变化出现差异。由于神经网络所具有的较强的非线性映射等特性,它常被用于负荷预测。本文采用软件编程仿真......”。
4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....最淀。泥浆粘度过大时,不能直接加入清水,要搅拌低粘度的泥浆进行调节。泥浆粘度低时,要搅拌高粘度泥浆或加入适量的在机处理剂。泥浆性能不符合要求时,应及时调整,以适应钻进的需要。在泥浆含砂量大于,不易调整性能时,要更换泥浆。净化泥浆用旋流除沙器及泥浆循环槽净化泥浆。成井工艺井管选择根据现有地质资料,工作区含水层富水性中等,单井涌水量多在工作区预计单井涌水量。为防止井内涌砂必须控制井管的进水速度我国般允许进水速度。为降低进水速度,适当增大管径,增大钻孔直径,亦增大进水面积。本着实用经济的原则,选用孔隙率较高,价格低廉的打眼缠丝钢质滤水管。缠丝间距,管径∮的螺旋卷板钢管。下管下管前的准备工作水文物探测井下管前先采用视电阻率视电阻率梯度曲线及自然电位三种方法联合测井,结合水文地质勘查成果划分地层剖面,确定含水层及相对隔水层位置,进行下管排序以指导下管工作。校正孔深准确丈量钻具,校正孔深。每测次孔斜,每深度内孔斜应。滤水管对准取水含水层。破壁园孔与换浆在钻进过程中,泥浆在孔壁上形成较厚的泥皮,这对下管填砾洗井会带来不良的影响,以至影响出水量。为此,须将孔壁上的泥皮除掉......”。
5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....,,工作日训练结果为,,,可见,经过次训练后,网络误差达到要求,结果如图休息日训练结果所示,图工作日训练结果所示。图休息日训练结果图工作日训练结果训练好的网络还需要进行测试才可以判定是否可以投入实际应用。休息日测试代码如下工作日测试代码如下没有赵老师的悉心指导,本论文也不可能完成得如此顺利。在为期几个月的设计中,同学们的团结互助,无私帮助让我十分的感动,如果在这几个月中,我单凭己之力要完成本设计是十分困难的,因为本设计的知识和内容大部分是以前未曾接触的,有许多新的东西要求我在短短几个月内消化吸收。但我们小组做为个团队,大家相互帮助,相互鼓励,互相监督,共同讨论和解决问题,使论文能高质高效的完成。此外,我还要感谢我所列参考文献的作者,正是他们的许多研究成果给了我很大的帮助,在此表示诚挚的谢意这里利用仿真函数来计算网络的输出。预报误差曲线如图休息日预报误差曲线所示,图工作日预报误差曲线所示。图休息日预报误差图工作日预报误差结论分析电力负荷预测是电力调度用电计划规划等部门的重要工作,国内外关于短期负荷预测的文献很多,但是由于电力负荷受诸多因素的影响和负荷本身的不确定性......”。
6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....此外,由于电力负荷还与环境因素有关,如最高和最低温度等。因此,还需要通过天气预报等手段获得预测日的最高和最低温度。这里将电力负荷预测日当日的气象特征数据作为网络的输入变量。因此,输入变量就是个维的向量。显而易见,目标向量就是预测日当天的个负荷值,即天中每个整点的电力负荷。这样来,输出变量就成为个维的向量。获得输入和输出变量后,要对其进行归化处理,将数据处理为区间,之间的数据。归化方法有许多种形式,这里采用如下公式在样本中,输入向量为预测日前天的电力实际负荷数据,目标向量是预测日当天的电力负荷。由于这都是实际的测量值,因此,这些数据可以对网络进行有效的训练。如果从提高网络精度的角度出发,方面可以增加网络训练样本的数目,另方面还可以增加输入向量的维数。即,或者增加每日的测量点,或者把预测日前几天的负荷数据作为输入向量。目前,训练样本数目的确定没有通用的方法,般认为样本过少可能使得网络的表达不够充分,从而导致网络外推能力不够而样本过多可能会出现样本冗长现象,既增加了网络的训练负担,也可能出现信息量过剩使得网络出现过拟合现象。总之......”。
7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....中,正好满足网络输出的要求。利用以下代码创建个满足上述要求的网络其中,变量用于规定输入向量的最大值最小值,规定了网络输入输出层隐层输入层向量的最大值为,最小值为。表示设定网络的训练函数为,它采用算法进行网络学习。网络训练计算出预测日点的归化系数网络经过训练后才可以用于电力负荷预测的实际应用。考虑到网络的结构比较复杂,神经元个数比较多,需要适当增大训练次数和学习速率。训练参数的设定如表所示。表训练参数训练次数训练目标学习速率训练代码如下为输入向量,为目标向量休息日训练结果为,,,工作日训练结果为,,,可见,经过次训练后,网络误差达到要求,结果如图休息日训练结果所示,图工作日训练结果所示。图休息日训练结果图工作日训练结果训练好的网络还需要进行测试才可以判定是否可以投入实际应用。休息日测试代码如下工作日测试代码如下没有赵老师的悉心指导,本论文也不可能完成得如此顺利。在为期几个月的设计中,同学们的团结互助,无私帮助让我十分的感动,如果在这几个月中,我单凭己之力要完成本设计是十分困难的,因为本设计的知识和内容大部分是以前未曾接触的......”。
8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....且没有持续上升或下降的趋势。抽水试验的稳定延续时间,宜符合下列要求细砂和粉砂含水层中稳定时间为。抽水试验时,动水位和水量观测的时间间隔应满足非稳定流计算要求,宜在抽水开始后的第各观测次,以后每隔或观测次。水温气温观测的时间,宜每隔同步测量次。抽水结束前分钟,采取水质全微量分析样,送至具有质量认证的专业实验单位进行测试。现场对绘制的曲线进行分析,如不符合要求或曲线出现异常,应及时查证原因并处理。抽水结束后,立即进行恢复水位观测,观测时间要求同抽水观测要求相同。结论本次工作按上述技术要求施工完电负荷的自身特点,从而选择合理的训练样本。网络的设计本文依据人工神经网络来建模,根据网络来预测点负荷。如图预测点负荷的网络。图预测点负荷的网络网络是系统预测中应用特别广泛的种网络形式,因此,本文采用网络对负荷值进行预报。根据网络来设计网络,般的预测问题都可以通过单隐层的网络实现。本文由于输入向量有个元素,所以网络输入层的神经元有个,经过多次训练网络中间层的神经元可以取个。而输出向量有个,所以输出层中的神经元应该有个。网络中间层的神经元传输函数采用型正切函数,输出层神经元传递函数采用型对数函数......”。
9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....众所周知,负荷曲线是很多因素相关的个非线性函数。对于抽样和逼近这种非线性函数,神经网络是种合适的方法。神经网络的优点在于它具有模拟多变量而不需要对输入变量做复杂的相关假设的能力。它不依靠专家经验,只利用观察到的数据,可以从训练过程中通过学习来抽样和逼近隐含的输入输出非线性的关系。近年来的研究表明,相对于前两种方法,利用神经网络技术进行电力系统短期负荷预报可获得更高的精度。在对短期负荷进行预报前,个特别重要的问题是如何划分负荷类型或日期类型。纵观已经发表的文献资料,大体有以下几种划分模式将周的天分为工作日星期到星期五和休息日星期六和星期天等两种类型将周分为星期星期二到星期四星期五星期六星期天等种类型。将周的天每天都看做种类型,共有种类型。本文采用第种负荷划分模式,将周的天分为工作日星期到星期五和休息日星期六和星期天等两种类型。输入输出向量设计在预测日的前天中,每个小时对电力负荷进行次测量,这样来,天共测得组负荷数据。由于负荷值曲线相邻的点之间不会发生突变,因此后时刻的值必然和前时刻的值有关,除非出现重大事故等特殊情况......”。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。