1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....故所求圆的方程为,或例设圆满足截轴所得弦长为被轴分成两段圆弧,其弧长的比为,在满足条件的所有圆中,求圆心到直线的距离为解得半径,所求圆的方程为新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆解法二圆心在线段的垂直平分线和已知直线的交点处,以下同解法。新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线上,且直线截圆所得弦长为,求此圆的方程。解因圆与轴相切,且圆心在直线上,故设圆方程为又因为直线截圆得弦长为,则有或例已知圆的圆心在曲线,圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有解之得或所求圆的方程为或例求半径为,与圆相切,且和直线相切的圆的方程解则题意,设所求圆的方程为圆圆与直线相切,且半径为,则圆心的坐标为,或......”。
2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....设所求圆的方程为圆圆与直线相切,且半径为,则圆心的坐标为,或,又已知圆的圆新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线上,且直线截圆所得弦长为,求此圆的方程。解因圆与轴相切,且圆心在直线上,故设圆方程为又因为直线截圆得弦长为,则有或例已知圆的圆心在曲线,圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有解之得或所求圆的方程为或例求半径为,与圆相切,且和直线相切的圆的方程解则题意,设所求圆的方程为圆圆与直线相切,且半径为,则圆心的坐标为,或,又已知圆的圆心的坐标为,半径为若两圆相切,则或当,时,或无解,故可得所求圆方程为或当,时,,或无解......”。
3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....以下同解法。新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线上,且直线截圆所得弦长为,求此圆的方程。解因圆与轴相切,且圆心在直线上,故设圆方程为又因为直线截圆得弦长为,则有或例已知圆的圆心在曲线,圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有解之得或所求圆的方程为或例求半径为,与圆相切,且和直线相切的圆的方程解则题意,设所求圆的方程为圆圆与直线相切,且半径为,则圆心的坐标为,或,,则点到轴,轴的距离分别为,由题设知圆截轴所得劣弧对的圆心角为,知圆截轴所得的弦长为故又圆被轴所截得的弦长为,所以有从而得又因为到直线的例设圆满足截轴所得弦长为被轴分成两段圆弧,其弧长的比为......”。
4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....故设圆方程为又因为直线截圆得弦长为,则有新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线上,且直线截圆所得弦长为,求此圆的方程。解因圆与轴相切,且圆心在直线上,故设圆方程为又因为直线截圆得弦长为,则有或例已知圆的圆心在曲线,圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有解之得或所求圆的方程为或例求半径为,与圆相切,且和直线相切的圆的方程解则题意,设所求圆的方程为圆圆与直线相切,且半径为,则圆心的坐标为,或,又已知圆的圆心的坐标为,半径为若两圆相切,则或当,时,或无解,故可得所求圆方程为或当,时,......”。
5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....又的中点为故的垂直平分线的方程为即又知圆心在直线上,故圆心坐标为,半径故所求圆的方程为又点,到圆心,的距离为点在圆外例求经过点圆心在直线上的圆的方程解法设圆心则有解得半径,所求圆的方程为新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆解法二圆心在线段的垂直平分线和已知直线的交点处,以下同解法。新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线上,且直线截圆所得弦长为,求此圆的方程。解因圆与轴相切,且圆心在直线上,故设圆方程为又因为直线截圆得弦长为,则有或例已知圆的圆心在曲线,圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有解之得或所求圆的方程为或例求半径为,与圆相切......”。
6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....半径为若两圆相切,则或当,时,或无解,故可得所求圆方程为或当,时,,或无解,故所求圆的方程为,或例设圆满足截轴所得弦长为被轴分成两段圆弧,其弧长的比为,在满足条件的所有圆中,求圆心到直线的距离为的圆的方程解设圆的圆心为半径为,则点到轴,轴的距离分别为,由题设知圆截轴所得劣弧对的圆心角为,知圆截轴所得的弦长为故又圆被轴所截得的弦长为,所以有从而得又因为到直线的距离为所以,即有,由此有或解方程组得或于是,所求圆的方程是,或圆与方程复习,例求过两点且圆心在直线上的圆的与圆的关系标准方程并判断点解法待定系数法设圆的标准方程为圆心在直线上,故圆的方程为又该圆过两点解之得,所以所求圆的方程为解法二直接求出圆心坐标和半径因为圆过两点......”。
7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....以下同解法。新疆源头学子小屋特级教师王新敞的距离为解得半径,所求圆的方程为新疆源头学子小屋特级教师王新敞无解,故所求圆的方程为,或例设圆满足截轴所得弦长为被轴分成两段圆弧,其弧长的比为,在满足条件的所有圆中,求圆心到直线,时,或无解,故可得所求圆方程为或当,时,,或为圆圆与直线相切,且半径为,则圆心的坐标为,或,又已知圆的圆心的坐标为,半径为若两圆相切,则或当解之得或所求圆的方程为或例求半径为,与圆相切,且和直线相切的圆的方程解则题意,设所求圆的方程或例已知圆的圆心在曲线,圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有上,且直线截圆所得弦长为,求此圆的方程。解因圆与轴相切......”。
8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....求圆心到直线的距离为的圆的方程解设圆的圆心为半径为故可得所求圆方程为或当,时,,或无解,故所求圆的方程为,或,则圆心的坐标为,或,又已知圆的圆心的坐标为,半径为若两圆相切,则或当,时,或无解,为或例求半径为,与圆相切,且和直线相切的圆的方程解则题意,设所求圆的方程为圆圆与直线相切,且半径为圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有解之得或所求圆的方程轴相切,且圆心在直线上,故设圆方程为又因为直线截圆得弦长为,则有或例已知圆的圆心在曲线,王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线上,且直线截圆所得弦长为,求此圆的方程......”。
9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....或例设圆满足截轴所得弦长为被轴分成两段圆弧,其弧长的比为,在满足条件的所有圆中,求圆心到直线的距离为上,且直线截圆所得弦长为,求此圆的方程。解因圆与轴相切,且圆心在直线上,故设圆方程为又因为直线截圆得弦长为,则有解之得或所求圆的方程为或例求半径为,与圆相切,且和直线相切的圆的方程解则题意,设所求圆的方程,时,或无解,故可得所求圆方程为或当,时,,或的距离为解得半径,所求圆的方程为新疆源头学子小屋特级教师王新敞王新敞特级教师源头学子小屋新疆例圆与轴相切,圆心在直线上,且直线截圆所得弦长为,求此圆的方程。解因圆与圆与轴相切,又与另圆相外切,求圆的方程解设圆圆心坐标为,,半径为,依题有解之得或所求圆的方程,则圆心的坐标为,或......”。
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。