1、“.....而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上。主减速器的轴承预紧及齿轮啮合调整支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的。预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的。主动锥齿轮轴承预紧度的调整采用套筒与垫片,从动锥齿轮轴承预紧度的调整采用调整螺母。主减速器的减速形式主减速器的减速形式分为单级减速双级减速如图.单级贯通双级贯通主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关......”。
2、“.....通常单极减速器用于主减速比.的各种中小型汽车上。差速器型式发展现状根据汽车行驶运动学的要求和实际的车轮道路以及它们之间的相互联系表明汽车在行驶过程中左右车轮在同时间内所滚过的行程往往是有差别的。例如,拐弯时外侧车轮行驶总要比内侧长。另外,即使汽车作直线行驶,也会由于左右车轮在同时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压轮胎负荷胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求单级主减速器双级主减速器图.主减速器车轮行程不等。在左右车轮行程不等的情况下,如果采用根整体的驱动车轮轴将动力传给左右车轮,则会由于左右车轮的转速虽然相等而行程却又不同的这运动学上的矛盾,引起驱动车轮产生滑转或滑移。这不仅会是轮胎过早磨无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移......”。
3、“.....为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于解放货车,双级主,减速器,驱动,设计,毕业设计,全套,图纸主减速器结构方案的确定.差速器的选择.半轴型式的确定.桥壳型式的确定.本章小结第章主减速器的基本参数选择与设计计算.主减速齿轮计算载荷的计算.主减速器齿轮参数的选择.主减速器螺旋锥齿轮的几何尺寸计算与强度计算主减速器螺旋锥齿轮的几何尺寸计算主减速器螺旋锥齿轮的强度计算.主减速器齿轮的材料及热处理.第二级斜齿圆柱齿轮基本参数的选择.第二级斜齿圆柱齿轮校核.主减速器轴承的计算.主减速器的润滑......”。
4、“.....差速器的作用.对称式圆锥行星齿轮差速器差速器齿轮的基本参数选择差速器齿轮的几何尺寸计算与强度计算.本章小结第章半轴设计.半轴的设计与计算全浮式半轴的设计计算半轴的结构设计及材料与热处理.本章小结第章驱动桥桥壳设计.桥壳的受力分析及强度计算桥壳的静弯曲应力计算在不平路面冲击载荷作用下桥壳的强度计算汽车以最大牵引力行驶时的桥壳的强度计算汽车紧急制动时的桥壳强度计算汽车受最大侧向力时桥壳的强度计算.本章小结结论参考文献致谢摘要本次设计的题目是中型货车驱动桥设计。驱动桥般由主减速器差速器半轴及桥壳四部分组成,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左右车轮,并使左右驱动车轮具有汽车行驶运动学所要求的差速功能此外,还要承受作用于路面和车架或车厢之间的铅垂力纵向力和横向力。本文首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式发展过程,及其以往形式的优缺点的基础上,确定了总体设计方案采用整体式驱动桥......”。
5、“.....主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴型式采用全浮式,桥壳采用铸造整体式桥壳。在本次设计中,主要完成了双级减速器圆锥行星齿轮差速器全浮式半轴桥壳的设计工作。关键词驱动桥主减速器全浮式半轴桥壳差速器第章绪论.课题研究的目的和意义汽车驱动桥是汽车传动系统的重要组成,承载着汽车的满载荷重及地面经车轮车架给予的垂直力纵向力横向力及其力矩,以及冲击载荷驱动桥还传递着传动系中的最大转矩。汽车驱动桥的结构型式和设计参数对汽车动力性经济性平顺性通过性有直接影响。驱动桥的结构型式选择设计参数选取及设计计算对汽车的整车设计和性能极其重要。对些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。为提高锥形齿轮副的啮合平稳性和强度,第级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮......”。
6、“.....从而完成级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。随着中国公路建设水平的不断提高,公路运输车辆正向大吨位多轴化大马力方向发展,使得重型车桥总成也向。对于螺旋锥齿轮式中主从动齿轮齿面宽中点的分度圆直径从动齿轮齿面宽从动齿轮的节锥角.计算得螺旋锥齿轮的轴向力与径向力主动齿轮的螺旋方向为左旋转方向为顺时针从动齿轮的螺旋方向为右式中齿廓表面的法向压力角.主从动齿轮的节锥角.,.。主减速器轴承载荷的计算轴承的轴向载荷,就是上述的齿轮轴向力。而轴承的径向载荷则是上述齿轮径向力圆周力及轴向力这三者所引起的轴承径向支承反力的向量和。当主减速器的齿轮尺寸支承型试和轴承位置已确定,并算出齿轮的径向力轴向力及圆周力以后,则可计算出轴承的径向载荷。悬臂式支承主动锥齿轮的轴承径向载荷如图.所示轴承的径向载荷为......”。
7、“.....主减速器轴承的布置尺寸其尺寸为悬臂式支撑的主动齿轮式中齿面宽中点处的圆周力主动齿轮的轴向力主动齿轮的径向力主动齿轮齿面宽中点的分度圆直径。双级减速器的从动齿轮的轴承径向载荷轴承的径向载荷分别为式中齿面宽中点处的圆周力从动齿轮的轴向力从动齿轮的径向力第二级减速斜齿圆柱齿轮的圆周力轴向力和径向力第二级减速主动齿轮的节圆直径从动齿轮齿面宽中点的分度圆直径。.式中计算转矩斜齿圆柱齿轮的螺旋角法向压力角。.主减速器的润滑主加速器及差速器的齿轮轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为其润滑不能靠润滑油的飞溅来实现。为此,通常是在从动齿轮的前端近主动齿轮处的主减速壳的内壁上设专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过近油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环......”。
8、“.....而且可以保护前端的油封不被损坏。为了保证有足够的润滑油流进差速器,有的采用专门的倒油匙。为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主减速器壳上或桥壳上装置通气塞,后者应避开油溅所及之处。加油孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。.本章小结本章根据所给汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单工作平稳制造方便用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左右驱动车轮间的所谓轮间差速器使用对于经常行驶在泥泞松软土路或无路地区的越野汽车来说,为了防止因侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的......”。
9、“.....本次设计选用普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。.半轴型式的确定浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,故未得到推广。全浮式半轴广泛应用于轻型以上的各类汽车上。本次设计选择全浮式半轴。.桥壳型式的确定整体式桥壳的特点是将整个桥壳制成个整体,桥壳犹如个整体的空心梁,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在起。使主减速器和差速器的拆装调整维修保养等都十分方便。其主要缺点是桥壳不能做成复杂而理想的断面,壁厚定,故难于调整应力分布。铸造式桥壳强度刚度较大多用于重型货车。本次设计驱动桥壳就选用铸造式整体式桥壳。.本章小结本章首先确定了主减速比,以方便确定其它参数......”。
半轴.dwg
(CAD图纸)
半轴齿轮.dwg
(CAD图纸)
从动锥齿轮.dwg
(CAD图纸)
封皮.doc
解放CA1092货车双级主减速器驱动桥设计说明书.doc
目录.doc
任务书.doc
设计图纸集.dwg
(CAD图纸)
双级主减速器驱动桥装配图.dwg
(CAD图纸)
圆柱齿轮.dwg
(CAD图纸)
主动锥齿轮.dwg
(CAD图纸)