1、“.....驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥后者称为独立悬架驱动桥。独立悬架驱动桥结构叫复杂,但可以大大提高汽车在不平路面上的行驶平顺性。普通非断开式驱动桥,由于结构简单造价低廉工作可靠,广泛用在各种载货汽车客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构特别是桥壳结构虽然各不相同,但是有个共同特点,即桥壳是根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的个缺点。驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中......”。
2、“.....也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器越野汽车为了提高离地间隙,可以将对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方有些双层公共汽车为了进步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到个驱动车轮的旁边。在少数具有高速发动机的大型公共汽车多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联......”。
3、“.....两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的部分轿车及些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。为了提高装载量和通东风,轻型,货车,驱动,设计,毕业设计,全套,图纸摘要轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要。驱动桥作为汽车四大总成之,它的性能的好坏直接影响整车性能......”。
4、“.....为满足当前载货汽车的快速高效率高效益的需要时,必须要搭配个高效可靠的驱动桥。设计出结构简单工作可靠造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,所以本题设计款结构优良的轻型货车驱动桥具有定的实际意义。本文首先确定主要部件的结构型式和主要设计参数,在分析驱动桥各部分结构形式发展过程及其以往形式的优缺点的基础上,确定了总体设计方案,采用传统设计方法对驱动桥各部件主减速器差速器半轴桥壳进行设计计算并完成校核。最后运用完成装配图和主要零件图的绘制。关键词轻型货车驱动桥单级主减速器差速器半轴桥故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作介绍驱动桥的设计,由驱动桥的结构组成功用工作特点及设计要求,详细地分析了驱动桥总成的结构型式及布置方法全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。汽车驱动桥由桥壳主减速器差速器半轴和壳体等元件组成,转向驱动桥还包括各种等速联轴节,结构更复杂......”。
5、“.....以及冲击载荷驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥在汽车的各种总成中也是涵盖机械零件部件总成等品种最多的大总成。例如,驱动桥包含主减速器差速器驱动车轮的传动装置半轴及轮边减速器桥壳和各种齿轮。可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件元件及总成的制造也几乎要涉及到所有的现代机械制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。传统设计是以生产经验为基础,以运用力学数学和回归方法形成的公式图表手册等为依据进行的。现代设计是传统设计的深入丰富和发展,而非独立于传统设计的全新设计。以计算机技术为核心,以设计理论为指导,是现代设计的主要特征。利用这种方法指导设计可以减小经验设计的盲目性和随意性,提高设计的主动性科学性和准确性。电子计算机的出现和在工程设计中的推广应用,使汽车设计技术飞跃发展,设计过程完全改观。它有以下两大难题,是将发动机输出扭矩通过万向传动轴将动力传递到驱动轮上......”。
6、“.....从而提高汽车的行驶能力。二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。我国驱动桥制造企业的开发模式主要由测绘引进自主开发三种组成。主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题。国内的大多数中小企业中,测绘市场销路较好的产品是它们的主要开发模式。特别是些小型企业或民营企业由于自身的技术含量低,开发资金的不足,专门测绘仿制市场上销售较旺的汽车的车桥售往我国不健全的配件市场。这种开发模式是无法从根本上提高我国驱动桥产品开发水平的。中国驱动桥产业发展过程中存在许多问题,许多情况不容乐观,如产业结构不合理产业集中于劳动力密集型产品技术密集型产品明显落后于发达工业国家生产要素决定性作用正在削弱产业能源消耗大产出率低环境污染严重对自然资源破坏力,以得到满意的驱动桥离地间隙。.当时,的最小取值可取,但为了啮合平稳及提高疲劳强度,最好大于.当较小.时,可取为......”。
7、“.....尺寸太大而不能保证所要求的离地间隙.为了磨合均匀,之间应避免有公约数.为了得到理想的齿面重叠系数,与之和应不小于查阅资料,经方案论证,主减速器的传动比为.,初定主动齿轮齿数,从动齿轮齿数。节圆直径的选择根据从动锥齿轮的计算转矩见式.,式.并取两者中较小的个为计算依据按经验公式选出取.式中从动锥齿轮的节圆直径,直径系数,取计算转矩取与中较小者齿轮端面模数的选择选定后,可按式算出从动齿轮大端模数,并用下式校核取式中模数系数,取计算转矩取。圆锥齿轮从动齿轮的齿宽为其节锥距的.倍。对于汽车工业,主减速器螺旋锥齿轮面宽度推荐采用,可初取。般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出些,通常小齿轮的齿面加大较为合适,在此取。螺旋锥齿轮螺旋方向般情况下主动齿轮为左旋,从动齿轮为右旋,以使二齿轮的轴向力有互相斥离的趋势。螺旋角的选择格里森制推荐公式。式中,主从动齿轮齿数双曲面齿轮的偏移距,对螺旋锥齿轮取。在般机械制造用的标准制中,螺旋角推荐用主从动锥齿轮的螺旋方向是相反的......”。
8、“.....当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向。这样可使主从动齿轮有分离的趋势,防止轮齿因卡死而损坏。所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋,从锥顶看为顺时针,驱动汽车前进。表.齿轮的几何尺寸计算用表序号项目计算公式计算结果主动齿轮齿数从动齿轮齿数模数齿面宽工作齿高.全齿高.法向压力角轴交角.节圆直径节锥角节锥距.周节齿顶高齿根高径向间隙.齿根角面锥角根锥角外圆直径.节锥顶点止齿轮外缘距离理论弧齿厚齿侧间隙.螺旋角.主减速器锥齿轮的强度计算在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。螺旋锥齿轮的强度计算主减速器螺旋锥齿轮的强度计算单位齿长上的圆周力按发动机最大转矩计算时.式中发动机输出的最大转矩,在此取变速器的传动比主动齿轮节圆直径,在此取.按上式计算档时直接档时。按最大附着力矩计算时.式中汽车满载时个驱动桥给水平地面的最大负荷......”。
9、“.....在此取轮胎与地面的附着系数,在此取.轮胎的滚动半径,在此取.按上式.。这不仅会是轮胎过早磨无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都有差速器,保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单质量较小等优点,应用广泛。差速器可分为普通锥齿轮式差速器摩擦片式差速器和强制锁止式差速器。普通齿轮式差速器的传动机构为齿轮式。齿轮差速器要圆锥齿轮式和圆柱齿轮式两种。强制锁止式差速器就是在对称式锥齿轮差速器上设置差速锁。当侧驱动轮滑转时,可利用差速锁使差速器不起差速作用......”。
半轴.dwg
(CAD图纸)
半轴齿轮.dwg
(CAD图纸)
半轴套管.dwg
(CAD图纸)
差速器右壳.dwg
(CAD图纸)
从动齿轮.dwg
(CAD图纸)
答辩相关材料.doc
东风轻型货车驱动桥设计开题报告.doc
东风轻型货车驱动桥设计论文.doc
封面.doc
过程管理封皮.doc
目录.doc
驱动桥装配图.dwg
(CAD图纸)
任务书.doc
设计图纸8张.dwg
(CAD图纸)
题目审定表.doc
行星齿轮.dwg
(CAD图纸)
中期检查表.doc
主动齿轮.dwg
(CAD图纸)