1、“.....并且通过激振实验定义轴承刚度,用有限元法计算高速永磁电机测试结果临界转速。研究表明,引入了三种在安全转速范围内低频率振动模态。介绍对于高速电机,转子速度般大约为,有甚至超过,定子绕组电流和铁心中磁通高频率,般在以上。设计台高速电机与设计台低速低频率电机有很大不同,分析轴承系统稳定性和计算临界转速是特别重要。如果工作转速接近临界转速,转子将会产生严重振动,尤其是对于高速旋转永磁电机,因为它允许抗拉强度较低。磁力轴承刚度和阻尼对高速电机临界转速有很大影响。计算临界转速方法通常有两种传递矩阵法和有限元分析法。与传递矩阵法相比,有限元分析法优点是简明通用并且省时。种基于有限元分析法简洁实用方法用来计算临界转速,研究运行磁力轴承非线性特性......”。
2、“.....用三维有限元分析建模来计算电磁转子固有频率。本文用三维有限元分析法结合实验法来研究高速电机固有频率和磁力轴承系统模态以及确定轴承刚度。建立有限元分析模型,是用来预测高阶模态临界转速和对计算不平衡反应提供基础。磁力轴承结构分析对于高速电机,通过磁力轴承运动能使转子悬浮起来。般情况下,磁力轴承转动产生径向力在不同状态下被控制。有关磁力轴承转动单自由度控制系统内容如图所示。般情况下,运动磁力轴承磁力与转子位移之间关系是非线性。然而,如果转子位置变化限制在个很小范围内话,运动磁力轴承磁力将作为转子位移个线性因素被考虑。有限元分析法研究表明,对于磁力轴承来说,每对磁线圈几乎都是相互独立。磁力轴承产生磁力在方向并不是成对,因此,需对方向径向力单独进行控制......”。
3、“.....当前可控旋浮转动参数磁力轴承刚度被定义为磁力增量取决于转子位移单位变化量,磁力轴承阻尼被定义为磁力增量取决于转子速度单位变化量。磁力轴承刚度和阻尼计算公式为从两式可以看出,当磁力轴承结构参数给定,磁力轴承刚度和阻尼主要取决于控制系统,控制方式将决定磁力轴承特性。轴承系统三维有限元分析模型轴承三维有限元模型永磁转子特别适合于高速电机,因为它结构简单高密度高效率。这种材料具有优良磁性,常用作永磁材料。然而,这种材料抗拉强度与其他永磁材料样,只有,比抗压强度减少了。因此,用种无磁合金护套保护永磁体是非常必要,通过护套给永磁体表面预紧力来减小永磁体拉力,高速电机测试结果的临界转速。 研究表明,引入了三种在安全转速范围内低频率的振动模态。 介绍对于高速电机......”。
4、“.....有的甚至超过,定子绕组电流和铁心中磁通的高频率,般在以上。 电机转子结构如图所示。正如图所显示,在有限元模型中,轴承被建成弹簧,径向和轴向弹簧用来支撑转子轴,转子材料特性在表格中加以说明。三维有限元分析磁轴承刚度磁力轴承刚度对磁力轴承系统临界转速预测准确性有很大影响。然而,准确地说明磁力轴承刚度影响因素是困难,因为轴承特性是非线性。本文用迭代法,通过改变有限元模型中刚度值,使有限元计算固有频率收敛于实验值来确定磁力轴承刚度。通过对磁力轴承系统悬浮特性分析,用激振实验可获得固有频率,图对激振实验结果作了简要说明。在静止状态下,电机产生不同频率正弦激振信号,激振信号使磁力轴承电磁场产生作用在转子上不同频率激振力。激振信号不够强是不会影响到转子悬浮状态,只有激振频率接近于转子固有频率,才能获得较大幅度位移信号。基于以上原理,能测得和固有频率。有关高速永磁电机磁力轴承系统机振实验见图,图显示了做高速电机实验设备......”。
5、“.....图显示了转子转动不同幅度,从图可以看出,转动转子低频临界转速与实验所得结果致。从表格可以看出,用有限元分析法计算得出固有频率比实验所得结果小,原因是转子涡动产生影响在计算时没有被考虑。运动转子产生同步正向进动,与之相应回转运动质量是负向,这将会间接地减少质量,并且增加转子系统刚度。临界转速计算和转子系统摸态分析临界转速计算和模态分析临界转速计算是设计转子系统项重要内容。为了获得可靠设计方案,必须通过调节临界转速来使得工作速度远不等于临界转速。研究磁轴承固有频率模态刚度阻尼之间关系是非常必要。图表示了磁力轴承系统振动模态,如图所示,若考虑轴向刚度,与没有安装轴承转子相比,新附加变化模态是种刚体移动模态图和中,若考虑径向刚度,新变化模态是种刚体摆动模态,这种状态包括两个在方向阶模态在图和中,正交弯曲模态是相应二阶模态和三阶模态组合图显示是扭转模态,可以看出......”。
6、“.....磁轴承刚度和可控参数决定临界转速值,转子结构影响是非常小。因此,通过调整可控参数来改变磁轴承刚度和阻尼,从而避免共振。刚度影响当转子结构固定,改变轴承刚度,对临界转速影响如图所示。轴承刚度越小,它对固有频率影响就越小,随着轴承刚度增加,固有频率对于刚体摆动模态,刚度影响是非常明显,然而,刚度对弯曲模态影响很小。当轴承刚度足够大且超过时,弯曲模态固有频率影响就变得非常显著,如果轴承刚度达到定值,增加轴承刚度是没有意义,因为固有频率不再增加,在这种情况下,通过改变转子结构和材料来改变固有频率。结构参数影响对于磁力轴承系统来讲,当转子速度低于弯曲模态临界转速时,转子是刚体转子如果转子速度高于弯曲模态临界转速时转子运动状态将会变得复杂,转子结构成为影响弯曲模态临界转速主要因素。结构决定因素如轴直径有效长度和轴伸对固有频率有很大影响,为了使转子弯曲模态转速超出工作速度范围,轴应该做得短而粗......”。
7、“.....轴延伸度对弯曲模态影响比较明显,但对刚体摆动模态影响很小,为了防止转子弯曲变形,轴轴伸保持在。刚体转子对高速电机磁力轴承是非常适合。对于刚体转子,磁力轴承实现动态控制是很容易,并且转子具有良好稳定性。再者,刚体转子动平衡实现是很容易,因为刚体转子弯曲变形非常小。当工作速度大于刚体振动模态临界转速时,它应满足这个条件,防止产生共振。附录基于有限元法计算磁力轴承的刚度和临界转速常用三维有限元法建立高速电机磁力轴承系统的固有频率和振动模态模型,并且通过激振实验定义轴承刚度,用有限元法计算高速永轴向可变地震作用。但是,轴向荷载减小导致了连接构件弯曲强度降低结果。破坏点弯矩估计值是根据ϕ定义,假设和点有相同压力在混凝土中。这很明显是个近似值因为它总是产生在ϕϕ处在图中。这个假设已经被证实,通过些混凝土墙体拉压曲线。在所有情况中,可以通过更加精确地方法获得ϕ较大值。然而......”。
8、“.....最大曲率从未超过ϕ值。剪切破坏模型剪力支配作用正如图中滞回模型描述那样。收缩作用和强度减小由于在同变形程度重复循环现在在滞回模型被实施了。剪切破坏模型假设了墙体抗剪强度在弯曲和轴向是独立。这也是个近似假定,但是忽略剪力和轴力相互影响和现行墙体设计依据是致。该模型最初是为剪跨比为或者更小矮墙而开发,其中,是剪力墙底部弯矩,是剪力值,是墙体长度。对于截面宽度更窄剪力墙,这个比值般要大于,如下文所示。在图中,点表示包络线中荷载位移关系中斜率变化点是可以从实验中观察到。试件新刚度值大约是最初刚度。在试验中出现点,般非常接近墙体对角处第条裂缝发生点。点相当于试验过程中剪力值最大点,而点可能和边界条件有关,在这种边界条件限制下,构件可能仍被当做结构抵御机制中部分。点点和点在图所示包络线中定义基于从个全尺寸剪力墙试件循环试验中所得试验结果。所有这些试件都被设计用来反应剪切失效模型而且它们剪跨比都在到之间......”。
9、“.....这被逐步增加而且与试件剪跨比变化次序相致。当试件侧向强度降至大约为最大强度时,试验就应该完成了。这个试验过程更多细节可以从其他地方找到。另方面,高墙模型特点可以从些钢筋混凝土梁试验结果中获得梁和矮墙剪切行为主要差异是在点以后梁强度已经丧失图,这已经被实现了。从矮墙试验中获得直线斜率说明了随着位移增大,剪切强度降低。这个事实导致了个问题,该然间不能处理刚性结构,因此,负半正定切线刚度矩阵发生在些点在回应中。基于这个原因,模型中直线被认为是近似不变。但是,实际极限位移依旧从试验中获得。旦这个最大位移从段墙试验历史分析中被最终确定,那么该构件就从结构中分离,并且刚度矩阵要被重新评估。图展示了这个模型条滞回曲线,这也遵从滞回模型。在剪切破坏模型中,点,附近裂缝清晰地说明了在条剪切裂缝产生后,收缩作用会经常出现在恢复力特性中。为了理解试件中在相同变形条件下观察到抗剪强度减小导致重复周期......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。