1、“.....对于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度高时,可取.计算齿轮的齿面宽,计算齿轮的齿数端面模数,计算弯曲应力的综合系数或几何系数,它综合考虑了齿形系数。载荷作用点的位置载荷在齿间的分布有效齿面宽应力集中系数及惯性系数等对弯曲应力计算的影响。计算弯曲应力时本应采用轮齿中点圆周力与中点端面模数,今用大端模数,而在综合系数中进行修正。按图选取小齿轮的.,大齿轮按上式.。,所以,.,.所以轴承符合使用要求。对于从动齿轮的轴承,的径向力计算公式见式和式已知.所以,轴承的径向力.轴承的径向力.轴承,均采用,其额定动载荷为对于轴承......”。
2、“.....径向力.,并且.,在此值为.约为.,由机械设计中表.可查得.,所以.所以轴承满足使用要求。对于轴承,轴向力,径向力.,并且.由机械设计中表.可查得.,所以.所以轴承满足使用要求。差速器设计汽车在行驶过程中左,右车轮在同时间内所滚过的路程往往不等。如果驱动桥的左右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上的滑移或滑转。为了防止这些现象的发生,汽车左右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学要求。差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器有多种形式......”。
3、“......对称式圆锥行星齿轮差速器的差速原理图差速器差速原理如图所示,对称式锥齿轮差速器是种行星齿轮机构。差速器壳与行星齿轮轴连成体,形成行星架。因为它又与主减速器从动齿轮固连在起,固为主动件,设其角速度为半轴齿轮和为从动件,其角速度为和。两点分别为行星齿轮与半轴齿轮和的啮合点。行星齿轮的中心点为,三点到差速器旋转轴线的距离均为。当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同半径上的三点的圆周速度都相等图,其值为。于是,即差速器不起差速作用,而半轴角速度等于差速器壳的角速度。当行星齿轮除公转外,还绕本身的轴以角速度自转时图......”。
4、“.....啮合点的圆周速度为。于是即若角速度以每分钟转数表示,则式为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。有式还可以得知当任何侧半轴齿轮的转速为零时,另侧半轴齿轮的转速为差速器壳转速的两倍当差速器壳的转速为零例如中央制动器制动传动轴时,若侧半轴齿轮受其它外来力矩而转动,则另侧半轴齿轮即以相同的转速反向转动。......”。
5、“.....两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成。如图所示。图普通的对称式圆锥行星齿轮差速器,轴承螺母,锁止垫片差速器左壳,螺栓半轴齿轮垫片半轴齿轮行星齿轮轴行星齿轮行星齿轮垫片差速器右壳.对称式圆锥行星齿轮差速器的设计由于在差速器壳上装着主减速器从动齿轮,所以在确定主减速器从动齿轮尺寸时,应考虑差速器的安重载汽车后驱动桥结构的设计摘要增大但是当主传动比定时,主动齿轮尺寸相同时,双曲面齿轮比相应的弧齿锥齿轮小,从而可以得到更大的离地间隙,有利于实现汽车的总体布置。另外,弧齿锥齿轮与双曲面锥齿轮相比,具有较高的传动效率,可达......”。
6、“.....,般采用单级主减速器,单级减速驱动桥产品的优势单级减速驱动车桥是驱动桥中结构最简单的种,制造工艺较简单,成本较低,是驱动桥的基本型,在重型汽车上占有重要地位目前重型汽车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展随着公路状况的改善,特别是高速公路的迅猛发展,许多重型汽车使用条件对汽车通过性的要求降低,因此,重型汽车产品不必像过去样,采用复杂的结构提高其的通过性与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。主减速器主,从动锥齿轮的支承形式作为个吨级的驱动桥,传动的转矩较大......”。
7、“.....装于轮齿大端侧轴颈上的轴承,多采用两个可以预紧以增加支承刚度的圆锥滚子轴承,其中位于驱动桥前部的通常称为主动锥齿轮前轴承,其后部紧靠齿轮背面的那个齿轮称为主动锥齿轮后轴承当采用骑马式支承时,装于齿轮小端侧轴颈上的轴承般称为导向轴承。导向轴承都采用圆柱滚子式,并且内外圈可以分离有时不带内圈,以利于拆装。.主减速器的基本参数选择与设计计算主减速器计算载荷的确定.按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩式中发动机至所计算的主减速器从动锥齿轮之间的传动系的最低挡传动比,在此取.,此数据此参考斯太尔.车型发动机的输出的最大转矩,此数据参考斯太尔......”。
8、“.....在此取.该汽车的驱动桥数目在此取由于猛结合离合器而产生冲击载荷时的超载系数,对于般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取.,当性能系数时可取.汽车满载时的总质量在此取所以即.由以上各参数可求按驱动轮打滑转矩确定从动锥齿轮的计算转矩式中汽车满载时个驱动桥给水平地面的最大负荷,预设后桥所承载的负荷轮胎对地面的附着系数,对于安装般轮胎的公路用车,取.对于越野汽车取.对于安装有专门的防滑宽轮胎的高级轿车,计算时可取.车轮的滚动半径,在此选用轮胎型号为.,滚动半径为.......”。
9、“.....取.,由于没有轮边减速器取.所以按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定式中汽车满载时的总重量,参考斯太尔.车型在此取所牵引的挂车满载时总重量但仅用于牵引车的计算道路滚动阻力系数,对于载货汽车可取在此取.汽车正常行驶时的平均爬坡能力系数,对于载货汽车可取在此取.汽车的性能系数在此取见式,下的说明。所以.式式参考汽车车桥设计式式。主减速器基本参数的选择主减速器锥齿轮的主要参数有主从动齿轮的齿数和......”。
半轴A2、主动齿轮A3合计2张.dwg
(CAD图纸)
半轴A2.pdf
半轴齿轮A3.dwg
(CAD图纸)
半轴齿轮A3.pdf
从动齿轮A3.dwg
(CAD图纸)
从动齿轮A3.pdf
鉴定意见.doc
评阅表.doc
驱动桥及差速器的介绍外文文献翻译.doc
任务书.doc
正文.docx
重载汽车后驱动桥结构设计说明书.docx
主动齿轮A3.pdf
装配图A0.dwg
(CAD图纸)
装配图A0.pdf