帮帮文库

返回

19中考数学 二次函数的应用复习课件1 苏科版文档 19中考数学 二次函数的应用复习课件1 苏科版文档

格式:PPT 上传:2022-06-24 23:10:37

《19中考数学 二次函数的应用复习课件1 苏科版文档》修改意见稿

1、“.....即时,水位上升多少米当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标,再选用适当的形式求其关系式。通过这节课的学习活动你有哪些收获对这节课的学习,你还有什么想法吗,二次函数与拱桥问题,例有座抛物线形拱桥,正常水位时桥下水面宽度为,拱顶距离水面。在如图所示的直角坐标系中,求出该抛物线的解析式。解设抛物线的解析式为,且过点,,故分析拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,只在桥下顺利航行拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升,设水位上升时,水面与抛物线交于点......”

2、“.....为保证过往船只顺利航行,桥下水面的宽度不得小于,求水深超过多少米时就会影响过往船,在正常水位的基础上,当水位上升时,桥下水面的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式线的解析式为,且过点,,故分析拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。,二次函数与拱桥问题,例有座抛物线形拱桥,正常水位时桥下水面宽度为,拱顶距离水面。在如图所示的直角坐标系中,求出该抛物线的解析式。解设抛物的景观灯。求抛物线的解析式求两盏景观灯之间的水平距离建立直角坐标系点的坐标解析式的设定求解析式,这节课的学习,你还有什么想法吗二次函数的应用如图是座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是,拱桥的跨度为,桥洞与水面的最大距离是,桥洞两侧壁上各有盏距离水面当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式......”

3、“.....再选用适当的形式求其关系式。通过这节课的学习活动你有哪些收获对设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于,求水深超过多少米时就会影响过往船只在桥下顺利航行根据逆向思维可求水面宽度为,即时,水位上升多少米,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,则桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的宽度为物线形拱桥,正常水位时桥下水面宽度为,拱顶距离水面。在如图所示的直角坐标系中,求出该抛物线的解析式。解设抛物线的解析式为,且过点,,故分析拱收获对这节课的学习,你还有什么想法吗,二次函数与拱桥问题,例有座抛升多少米当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标......”

4、“.....通过这节课的学习活动你有哪些设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于,求水深超过多少米时就会影响过往船只在桥下顺利航行根据逆向思维可求水面宽度为,即时,水位上的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,则拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,则设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于......”

5、“.....即时,水位上升多少米当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标,再选用适当的形式求其关系式。通过这节课的学习活动你有哪些收获对这节课的学习,你还有什么想法吗,二次函数与拱桥问题,例有座抛物线形拱桥,正常水位时桥下水面宽度为,拱顶距离水面。在如图所示的直角坐标系中,求出该抛物线的解析式。解设抛物线的解析式为,且过点,,故分析拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,则设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于,求水深超过多少米时就会影响过往船只在桥下顺利航行根据逆向思维可求水面宽度为......”

6、“.....水位上升多少米当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标,再选用适当的形式求其关系式。通过这节课的学习活动你有哪些收获对这节课的学习,你还有什么想法吗二次函数的应用如图是座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是,拱桥的跨度为,桥洞与水面的最大距离是,桥洞两侧壁上各有盏距离水面的景观灯。求抛物线的解析式求两盏景观灯之间的水平距离建立直角坐标系点的坐标解析式的设定求解析式,二次函数与拱桥问题,例有座抛物线形拱桥,正常水位时桥下水面宽度为,拱顶距离水面。在如图所示的直角坐标系中,求出该抛物线的解析式。解设抛物线的解析式为,且过点,,故分析拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化......”

7、“.....设水位上升时,水面与抛物线交于点,则设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于,求水深超过多少米时就会影响过往船只在桥下顺利航行拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,则设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于,求水深超过多少米时就会影响过往船只在桥下顺利航行根据逆向思维可求水面宽度为,即时,水位上升多少米当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标,再选用适当的形式求其关系式。通过这节课的学习活动你有哪些收获对这节课的学习,你还有什么想法吗,二次函数与拱桥问题,例有座抛物线形拱桥......”

8、“.....拱顶距离水面。在如图所示的直角坐标系中,求出该抛物线的解析式。解设抛物线的解析式为,且过点,,故分析拱桥是个轴对称图形,对称轴为图中轴,因此可知抛物线上些特殊点坐标,用待定系数法可求解析式。在正常水位的基础上,当水位上升时,桥下水面的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,则设正常水位时桥下的水深为,为保证过往船只顺利航行,桥下水面的宽度不得小于,求水深超过多少米时就会影响过往船只在桥下顺利航行根据逆向思维可求水面宽度为,即时,水位上升多少米当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标,再选用适当的形式求其关系式。通过这节课的学习活动你有哪些收获对这节课的学习,你还有什么想法吗的宽度为,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化......”

9、“.....设水位上升时,水面与抛物线交于点,则升多少米当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标,再选用适当的形式求其关系式。通过这节课的学习活动你有哪些物线形拱桥,正常水位时桥下水面宽度为,拱顶距离水面。在如图所示的直角坐标系中,求出该抛物线的解析式。解设抛物线的解析式为,且过点,,故分析拱,试求出用表示的函数关系式当水位上升时,抛物线与水面交点在变化,设为代入抛物线解析式可得与关系式,设水位上升时,水面与抛物线交于点,则当时,,当水深超过时会影响过往船只在桥下顺利航行。说明要求抛物线的函数关系式,关键是确定其上的点的坐标,再选用适当的形式求其关系式。通过这节课的学习活动你有哪些收获对的景观灯。求抛物线的解析式求两盏景观灯之间的水平距离建立直角坐标系点的坐标解析式的设定求解析式,线的解析式为,且过点,,故分析拱桥是个轴对称图形,对称轴为图中轴......”

下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(1)
1 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(2)
2 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(3)
3 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(4)
4 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(5)
5 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(6)
6 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(7)
7 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(8)
8 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(9)
9 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(10)
10 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(11)
11 页 / 共 12
中考数学 二次函数的应用复习课件1 苏科版.ppt预览图(12)
12 页 / 共 12
预览结束,喜欢就下载吧!
  • 内容预览结束,喜欢就下载吧!
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为PPT文档,建议你点击PPT查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档