1、“.....从而增加轮胎与路面间的摩擦阻力,使转向变得很沉重。为了克服因左右前轮制动力不等而导致汽车制动时跑偏,近年来出现主销偏移距为负值的汽车。前轮定位除上述主销后倾角主销内倾角外,还有车轮外倾角及前束,共项参数。车轮外倾指转向轮在安装时,其轮胎中心平面不是垂直于地面,而是向外倾斜个角度,称为车轮外倾角。此角约为,般为左右。它可以避免汽车重载时车轮产生负外倾即内倾,同时也与拱形路而相适应。由于车轮外倾使轮胎接地点向内缩,缩小了主销偏移距,从而使转向轻便并改善了制动时的方向稳定性。前束的作用是为了消除汽车在行驶中因车轮外倾导致的车轮前端向外张开的不利影响具有外倾角的车轮在滚动时犹如滚锥,因此当汽车向前行驶时,左右两前轮的前端会向外张开,为此在车轮安装时,可使汽车两前轮的中心平面不平行,且左右轮前面轮缘间的距离小于后面轮缘间的距离,以使车轮在每瞬时的滚动方向是向着正前方。前束即,般汽车约为,可通过改变转向横拉杆的长度来调整......”。
2、“.....应考虑转向梯形中的弹性和间隙等因素。在汽车的设计制造装配调整和使用中必须注意防止可能引起的转向车轮的摆振,它是指汽车行驶时转向轮绕主销不断摆动的现象,它将破坏汽车的正常行驶。转向车轮的摆振有自激振动与受迫振动两种类型。前者是由于轮胎侧向变形中的迟滞特性的影响,使系统在个振动周期中路面作用于轮胎的力对系统作正功,即外界对系统输入能量。如果后者的值大于系统内阻尼消耗的能量,则系统将作增幅振动直至能量达到动平衡状态。这时系统将在振幅下持续振动,形成摆振。其振动频率大致接近系统的固有频率而与车轮转速并不致,且会在较宽的车速范围内发生。通常在低速行驶时发生的摆振往往属于自摄振动型。当转向车轮及转向系统受到周期性扰动的激励,例如车轮失衡端面跳动轮胎的几何和机械特性不均匀以及运动学上的干涉等,在车轮转动下都会构成周期性的扰动。在扰动力周期性的持续作用下,便会发生受迫振动。当扰动的激励频率与系统的固有频率致时便发生共振......”。
3、“.....而且般都有明显的共振车速,共振范围较窄。通常在高速行驶时发生的摆振往往属于受迫振动型。转向轮摆振的发生原因及影响因素复杂,既有结构设计的原因和制造方面的因素如车轮失衡轮胎的机械特性系统的刚度与阻尼转向轮的定位角以及陀螺效应的强弱等又有装配调整方面的影响,如前桥转向系统各个环节间的间隙影响系统的刚度和摩擦系数影响阻尼等。合理地选择这些有关参数优化它们之间的匹配,精心地制造和装配调整,就能有效地控制前轮摆振的发生。在设计中提高转向器总成与转向拉杆系统的刚度及悬架的纵向刚度,提高轮胎的侧向刚度,在转向拉杆系中设置横向减震器以增加阻尼等,都是控制前轮摆振发生的些有效措施。第三章从动桥的结构形式总述各种车型的非断开式转向从动桥的结构型式基本相同,如图所示。作为主要零件的前梁是用中碳钢或中碳合金钢的,其两端各有呈拳形的加粗部分为安装主销的前梁拳部为提高其抗弯强度......”。
4、“.....以降低发动机从而降低传动系的安装位置以及传动轴万向节的夹角。为提高其抗扭强度,两端与拳部相接的部分采用方形断面,而靠近两端使拳部与中间部分相联接的向下弯曲部分则采用两种断面逐渐过渡的形状。中间部分的两侧还要锻造出钢板弹簧支座的加宽文承面。有的汽车的转向从动桥的前梁采用组合式结构,即由其采用无缝钢管的中间部分与采用模锻成形的两端拳形部分组焊而成。这种组合式前梁适于批量不太大的生产并可省去大型缎造设备。转向节多用中碳合金钢模级成整体式结构。有些大型汽车的转向节,由于其尺寸过大,也有采用组焊式结构的,即其轮轴部分是经压配并焊接上去的。主销的几种结构型式如下图所示,其中比较常用的是,两种。图主销结构形式圆柱实心型圆柱空心型上,下端为直径不等的圆柱,中间为锥体的主销下部圆柱比上部细的主销转向节推力轴承承受作用于汽车前梁上的重力,为减小摩擦使转向轻便可采用滚动轴承,例如推力球轴承推力圆锥滚子轴承或圆锥波子轴承等......”。
5、“.....主销上下轴承承受较大的径向力,多采用滑动轴承,也有采用滚针轴承的结构。后者的效率高,转向阻力小,且可延长使用寿命。农用车从动桥本设计为农用自卸车的转向前桥,因此应该本着耐用经济的思想进行方案的选择,为了降低生产成本,又在结构上满足要求的情况下应尽量简单。转向前桥有断开式和非断开式两种。断开式前桥与悬架相配合,结构比较复杂但性能比较好,多用于轿车等以载人为主的高级车辆。非断开式又称整体式,它与非悬架配合。它的结构简单,承载能力大,这种形式再现在汽车上得到广泛应用。因此本次设计就采用了非断开式从动桥。转向从动桥的主要零件有前梁,转向节,主销,注销上下轴承及转向节衬套,转向节推力轴承。前梁采用中间部分为无缝钢管与两端拳部组焊的形式。主销采用结构简单的实心的圆柱形如上图所示。另外为了保证汽车转弯行驶时所有车轮能绕个转向瞬时转向中心,在不同的圆周上作无滑动的纯滚动,本次设计有进行了转向梯形的优化设计......”。
6、“.....进行梯形的最佳参数和强度计算。第四章转向系的结构形式概述汽车在行驶过程中,经常需要改变方向。就轮式汽车而言,改变行驶方向的方法是,驾驶员通过套专设的机构,使汽车的转向桥上的车轮相对于汽车纵轴线偏转定角度。此时路面作用于转向轮上的向后的反力就有了垂直与车轮的分量并成为汽车作曲线运动的向心力。在汽车直线行驶时,往往转向轮也会受到路面侧向干扰力的作截面分度圆直径齿顶高齿根高全齿齿顶圆直径齿根圆直径截面分度圆处的齿厚大端齿厚小端齿厚齿条在与齿扇配合时,因齿扇为变厚齿扇,则满足啮合间隙特性,齿条变厚方向应与齿扇相反,齿条的齿扇与齿扇的齿槽宽相等。二者啮合为等移距变为齿轮啮合传动。六循环球式转向器零件强度的计算为了进行强度计算,首先要确定其计算载荷......”。
7、“.....利用它可求的转向摇臂上得力矩和在转向盘上的切向力。他们均可作为转向系的最大载荷。钢球与滚道间的接触应力式中系数由下式确定查汽车设计表取钢球半径滚道截面半径螺杆外半径材料弹性模为钢球与螺杆间正压力,可用下式计算式中接触角取螺杆螺线导程角取参与工作的钢球数作用在螺杆上的轴向力由以上可知接触应力可以满足要求。七齿的弯曲应力式中作用在齿扇上的圆周力齿扇的齿高齿扇的齿宽基圆齿厚基圆齿厚的计算公式见机械原理课本由上可知弯曲应力完全满足。螺杆与螺母用刚材料制造,表面渗碳,深度为,表面硬度为。第七章转向梯形的优化设计转向梯形机构用来保证汽车转弯行驶时所有车轮能绕个瞬时转向中心,在不同的圆周上做无滑动的纯滚动。设计转向梯形的主要任务之是确定转向梯型的最佳参数和进行强度计算。转向梯形有整体式和断开式两种。般转向梯形机构布置在前轴之后,但当发动机位置很低或前轴驱动时......”。
8、“.....两轴汽车转向时,若忽略轮胎侧偏影响,两转向前轴的延长线应交于后轴延长线。设,分别是外内转向车轮转角,为两主销中心线延长线到地面交点之间的距离,则梯形机构应保证内外转向车轮的转角有如下关系,若自变角为则因变角的期望值为,现有转向梯形机构仅能满足上式要求。如下图所示,在图上作辅助虚线,利用余弦定理可推得转向梯形所绘出的实际因变角为其中梯形臂长梯形底角图汽车瞬时转向图应使设计的转向梯形所绘出的实际因变角尽可能接近理论上的期望值。其偏差最常使用的中间位置附近小转角范围应尽可能小,以减小高速行驶时轮胎的磨损。而在不经常使用且车速较慢的最大转角时可适当放宽要求......”。
9、“.....又上图可得其中汽车最小转弯半径为,主销偏移距为,考虑到此时使用工况下转角小于,且以内的小转角使用的更加频繁,因此取当建立约束条件时应考虑到设计变量及过小时,会使横拉杆上的转向力过大当过大时,将使梯形布置困难,故对的上下限及对的下限应设置约束条件。因越大,梯形越接近矩形值就越大,而优化过程是求的极小值,故可不必对的上限加以限制。综上所述,各设计变量的取值范围构成的约束条件为梯形臂长度设计时常取在,梯形底角此外,由机械原理得知,四连杆机构的传动角不宜过小,通常取。如上图所示,转向梯形机构在汽车向右转弯至极限位置时达到最小值,故只考虑右转弯时即可。利用该图所作的辅助虚线及余弦定理,可推出最小传动角约束条件为,式中,为最小传动角。由上述数学模型可知......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。