1、“.....见面后每两人之间要握手相互问候,共需握手多少次组合问题从个风景点中选出个游览,有多少种不同的方法组合问题从个风景点中选出个,并确定这个风景点的游览顺序,有多少种不同的方法排列问题组合问题组合是选择的结果,排列是选择后再排序的结果从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示概念讲解组合数注意是个数,应该把它与“组合”区别开来联系......”。
2、“.....四个元素中任取三个元素的组合数。写出从,四个元素中任取三个元素的排列数。根据分步计数原理,得到因此般地,求从个不同元素中取出个元素的排列数,可以分为以下步第步,先求出从这个不同元素中取出个元素的组合数第步,求每个组合中个元素的全排列数的排法三混合问题,先“组”后“排”例对种产品的件不同的正品和件不同的次品,进行测试,至区分出所有次品为止,若所有次品恰好在第次测试时全部发现......”。
3、“.....且第次测试是次品。故有种可能。练习学习小组有个男生个女生,从中选名男生和名女生参加三项竞赛活动,每项活动至少有人参加,则有不同参赛方法种解采用先组后排方法名医生和名护士被分配到所学校为学生体检,每校分配名医生和名护士,不同的分配方法共有多少种解法先组队后分校先分堆后分配解法二依次确定到第第二第三所学校去的医生和护士例从个学校中选出名学生参加数学竞赛,每校至少有人......”。
4、“.....每班至少分到个名额,共有多少种不同的分配方法从楼到二楼的楼梯有级,上楼时可以步走级,也可以步走两级,若要求步走完,则有多少种不同的走法四元素相同问题隔板策略课堂练习从位同学中选出位参加个座谈会,要求张王两人中至多有个人参加,则有不同的选法种数为。要从名男医生和名女医生中选人组成个医疗队,如果其中至少有名男医生和至少有名女医生......”。
5、“.....则甲乙两人不都入选的不同选法种数共有把个学生分到个工厂的三个车间实习,每个车间人,若甲必须分到车间,乙和丙不能分到二车间,则不同的分法有种。在如图的方格纸上每小方格均为正方形其中有多少个矩形其中有多少个正方形从名男生和名女生中任选人参加项社会实践活动,要求至多选名女生,且男生甲和女生乙不同时入选,求共有多少种不同的选法矩形的话用在两边任意取两点即可正方形的话,首先......”。
6、“.....边上有个点,连同点共个点,求由这个点共可构成多少个不同的三角形将名工程技术人员平均分到甲乙两个企业作技术指导,其中名工程设计人员不能分到同个企业,名电脑编程人员也不能分到同个企业,求共有多少种不同的分配方案城市新建的条道路上有只路灯,为了节约用电而又不影响正常的照明,可以熄灭其中只灯,但两端的灯不能熄灭,也不能熄灭相邻的两只灯。则熄灯的方法有多少种有个运动员名额,再分给个班......”。
7、“.....有多少种分配方案问题从甲乙丙名同学中选出名去参加天的项活动,其中名同学参加上午的活动,名同学参加下午的活动,有多少种不同的选法问题二从甲乙丙名同学中选出名去参加天项活动,有多少种不同的选法甲乙甲丙乙丙情境创设从已知的个不同元素中每次取出个元素,并成组问题从已知的个不同元素中每次取出个元素,按照定的顺序排成列问题排列组合有顺序无顺序组合定义般地,从个不同元素中取出个元素并成组,叫做从个不同元素中取出个元素的个组合排列定义般地......”。
8、“.....按照定的顺序排成列,叫做从个不同元素中取出个元素的个排列共同点都要“从个不同元素中任取个元素”不同点排列与元素的顺序有关,而组合则与元素的顺序无关概念讲解组合和排列有什么共同和不同点判断下列问题是组合问题还是排列问题设集合,则集合的含有个元素的子集有多少个铁路线上有个车站,则这条铁路线上共需准备多少种车票有多少种不同的火车票价组合问题排列问题名同学分数相同的数学和英语两个学习小组,共有多少种分法组合问题人聚会......”。
9、“.....共需握手多少次组合问题从个风景点中选出个游览,有多少种不同的方法组合问题从个风景点中选出个,并确定这个风景点的游览顺序,有多少种不同的方法排列问题组合问题组合是选择的结果,排列是选择后再排序的结果从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示概念讲解组合数注意是个数,应该把它与“组合”区别开来联系。有什么区别和和排列数探究组合数我们从具体问题分析组合排列你发现了什么写出从......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。