1、“.....∪,且≠,得,且≠命题点求抽象函数的定义域例若函数的定义域是则函数的定义域是若函数的定义域为则的定义域为函数的定义域是答案∪,∞解析由题意知,解得的定义域为函数的定义域是答案∪,∞解析由题意知,解得且≠,得,且≠命题点求抽象函数的定义域例若函数的定义域是则函数的定义域是若函数的定义域为则函数的定义域为答案,∪或,解析令,则由已知函数的定义域为可知要使函数有意义,则有,解得,故函数的定义域为,所以使函数有意义的条件是,≠,解得或故函数的定义域为,∪,函数的定义域为,即,则或命题点已知定义域求参数范围例若函数的定义域为,则的取值范围为答案,解析因为函数的定义域为,所以对∈恒成立,即,恒成立,因此有,解得思维升华简单函数定义域的类型及求法已知函数的解析式,则构造使解析式有意义的不等式组求解抽象函数无论是已知定义域还是求定义域,均是指其中的自变量的取值集合对应下的范围致已知定义域求参数范围,可将问题转化,列出含参数的不等式组......”。
2、“.....所以函数的定义域是,由,得解析换元法令,则即待定系数法设≠,则,即不论为何值都成立,解得消去法在中,用代替,得,将代入中,可求得思维升华函数解析式的求法待定系数法若已知函数的类型如次函数二次函数,可用待定系数法换元法已知复合函数的解析式,可用换元法,此时要注意新元的取值范围配凑法由已知条件,可将改写成关于的表达式,然后以替代,便得的解析式消去法已知与或之间的关系式,可根据已知条件再构造出另外个等式组成方程组,通过解方程组求出已知,则定义在成的系统机械能守恒解析根据重力做功与重力势能变化的关系可知地面上,上面放质量为的带正电小是无限集合题型函数的概念例有以下判断与表示同函数函数的图象与直线的交点最多有个与设计了个研究小物体自由下落时机械能是否守恒的实验,实验装置如图所示,图中两位置分别固定了两个光电门传感器实验时测得小加量为,项错整个过程中,电场力对小球做功,故系统机械能不守恒,项错答案第Ⅱ卷非选择题分二非选择题包括必考题和选考题两部分第题第题为必考题......”。
3、“.....项正确根据电场力做功与电势能的变化关系可知,电势能减少量,项正确由题可知,小球动能增加量为,重力势能增加量为,故机械能增小球离开弹簧时的速度为,不计空气阻力,则上述过程中小球的重力势能增加小球的电势能减少小球的机械能增加小球与弹簧组化,列出含参数的不等式组,进而求范围已知函数的定义域是则函数的恒成立,因此有,解得思维升华简单函数定义域的类型及求法已知函数的解析式,则构造使解析式有意义的不等式组求解抽象函数无论是已知定义域还是求定义域,均是指知定义域求参数范围例若函数的定义域为,则的取值范围为答案球,小球与弹簧不连接,施加外力将小球向下压至位置静止现撤去,使小球沿竖直方向运动,在小球由静止释放到刚离开弹簧的过程中,重力电场力对小球所做的功分别为和,时解得角速度最大值为,恰好未发生相对滑动时解得,所以选项正确答案如图,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平的角速度定满足转台的角速度定满足解析做圆周运动的向心力由对的摩擦力提供,由牛顿第二定律及向心加速度公式有,项正确整体恰好未发生相对转台的滑动与和与转台间的动摩擦因数都为,整体离转台中上都是个函数,求分段函数的函数值......”。
4、“.....要分类讨论组专项基础训练时间分钟下列各组函数中,表示同函数的是④,答案解析在中,定义域不同,在中,解析式不同,在④中,定义域不同已知函数的定义域为,的定义域为,则∪∁答案∞,解析,∞,故∪∁∞,设,则的值为答案解析已知,所以,则已知函数则答案解析由题意可得,所以,解得设函数,则使的的集合为答案解析由题意知,若,则,解得若,则,解得或故的集合为浙江已知函数则,的最小值是答案解析当时当且仅当时,取等号,此时当时当且仅当时,取等号,此时的最小值为已知是二次函数,若,且,求函数的解析式解设≠,又即又,解得,根据如图所示的函数的图象,写出函数的解析式解当时,函数的图象是条线段右端点除外,设≠,将点,代入,可得当时,同理可设≠,将点,代入,可得当时,所以组专项能力提升时间分钟若函数的定义域为,则实数的取值范围是答案,解析因为函数个函数常见函数定义域的求法类型满足的条件,∈与≠,≠,且≠≠,∈思考辨析判断下面结论是否正确请在括号中打或对于函数......”。
5、“.....则这两个函数是相等函数映射是特殊的函数若其对应是从到的映射分段函数是由两个或几个函数组成的若函数的定义域为,,解得或故的定义域为,∪,∞陕西设则答案解析,则教材改编若函数的定义域为,值域为,则函数的图象可能是填序号答案解析中函数定义域不是中图象不表示函数,④中函数值域不是故填给出下列四个命题函数是其定义域到值域的映射是函数函数∈的图象是条直线④函数的定义域和值域定是无限集合其中真命题的序号有答案解析对于,函数是映射,但映射不定是函数对于,是定义域为,值域为的函数对于,函数∈的图象不是条直线对于④,函数的定义域和值域不定,解析因为函数的定义域为,所以对∈恒成立,即,,≠,解得或故函数的定义域为,∪,函数的定义域为,即,则或命题点已,或,解析令,则由已知函数的定义域为可知要使函数有意义,则有,解得,故函数的定义域为,所以使函数有意义的条件是函数的定义域为答案,∪,且≠,得,且≠命题点求抽象函数的定,则或命题点已,或,解析令,则由已知函数的定义域为可知要使函数有意义,则有,解得,故函数的定义域为......”。
6、“.....并发出通知,要求各地区各部门认真贯彻执行。继党的群众路线教育实践活动和三严三实专题教育后,为了保持发展党的先进性和纯洁性,中央从严治党再出新举措,在全体党员中开展两学做。两学做学习教育,是落实党章关于加强党员教育管理要求面向全体党员深化党内教育的重要实践,是加强党的思想政治建设的重要部署。两学做学习教育不是次活动,其目的是要让广大党员牢记党的使命,保持党的本色,增强各项本领,言以蔽之呼唤广大党员不断增强党性意识。每位共产党员都要以党为先,对党忠强党的先进性和纯洁性建设的有力抓手。增写这个内容,有利于推动创先争优常态化长效化,引导党的基层组织充分发挥推动发展服务群众凝聚人心促进和谐的作用,充分发挥战斗堡垒作用激发广大党员增强光荣感和责任感保持先进性内在动力,充分发挥先锋模范作用。二是第三十条第二项第句修改为组织党员认真学习马克思列宁主义毛泽东思想邓小平理论三个代表重要思想和科学发展观。作这样的修改,有利于落实用马克思主义中国化创新成果特别是科学发展观武装全党的战略任务,发挥基层组织在推动科学发展观落到基层落到实处方面的重要作用......”。
7、“.....将党章的内容精髓灵活运用于旅游局的党组织建设中去,我认为主要要抓好以下几点要抓纪律,着力增强党的规章制度的约束力。要严格遵守和执行党的政治纪律,确保全党的集中统。党的干部,特别是领导干部,既要做实干家,又要有强烈的政治意识要干行,专行,不能缺少实干能力,成为空谈家实干是本领本要求增写了尊重党员主体地位加强对主要领导干部的监督的内容。新党章对党的建设总体要求充实的这些新内容,集中体现了加强党的执政能力建设先进性和纯洁性建设这条主线,反映了党的十七大以来党的建设取得的重大理论创新成果和重要实践经验,体现了我们党对马克思主义执政党建设规律认识的深化,有利于进步加强和改进党的建设,应对党面临的考验和风险,切实提高党的这样的充实,有利于全党牢牢把握发展社会主义先进文化前进方向,树立高度的文化自觉和文化自信,大力发展文化事业和文化产业,提高国家文化软实力,推动社会主义文的组成部分。中国特色社会主义道路是实现途径,中国特色社会主义理论体系是行动指南,中国特色社会主义制度是根本保障,三者统于中国特色社会主义伟大实践,是党领导人民在建设社会主义长期实践中形成的最鲜明特色......”。
8、“.....对于全党深化对中国特色社会主义的认识,全面把握中国特色社会主义的科学内涵,进步增强道路自信理论自信制度自信,坚定不移推进中国特色社会主义伟大事业,具有十分重要的意义。三新党章充实了坚持改革开放的内容改革开放是强国之路,是新时期最鲜明的特点。我国过去多年的快速发展靠的是改革开放,未来发展也必须坚定不移依靠改革开放。当前,我国改革进入攻坚阶段发展进入关键时期,必须以更大的政治勇气和智慧坚定不移推进改革开放,不断推进我义域为答案,∪,且≠,得,且≠命题点求抽象函数的定义域例若函数的定义域是则函数的定义域是若函数的定义域为则的定义域为函数的定义域是答案∪,∞解析由题意知,解得的定义域为函数的定义域是答案∪,∞解析由题意知,解得且≠,得,且≠命题点求抽象函数的定义域例若函数的定义域是则函数的定义域是若函数的定义域为则函数的定义域为答案,∪或,解析令,则由已知函数的定义域为可知要使函数有意义,则有,解得,故函数的定义域为,所以使函数有意义的条件是,≠......”。
9、“.....∪,函数的定义域为,即,则或命题点已知定义域求参数范围例若函数的定义域为,则的取值范围为答案,解析因为函数的定义域为,所以对∈恒成立,即,恒成立,因此有,解得思维升华简单函数定义域的类型及求法已知函数的解析式,则构造使解析式有意义的不等式组求解抽象函数无论是已知定义域还是求定义域,均是指其中的自变量的取值集合对应下的范围致已知定义域求参数范围,可将问题转化,列出含参数的不等式组,进而求范围已知函数的定义域是则函数的定义域是函数的定义域为答案解析因为函数的定义域是所以函数中的自变量需要满足解得,所以函数的定义域是,由,得解析换元法令,则即待定系数法设≠,则,即不论为何值都成立,解得消去法在中,用代替,得,将代入中,可求得思维升华函数解析式的求法待定系数法若已知函数的类型如次函数二次函数,可用待定系数法换元法已知复合函数的解析式,可用换元法,此时要注意新元的取值范围配凑法由已知条件,可将改写成关于的表达式,然后以替代,便得的解析式消去法已知与或之间的关系式,可根据已知条件再构造出另外个等式组成方程组......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。