1、“.....成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且在,∞上,若......”。
2、“.....每小题分,共分已知关于的∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,所以解析二项式系数和为,有,第项,令得......”。
3、“.....当,时,有最小值为解析等比,则,又,故解析时又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯实数根的的取值范围为分解法化简得分由的图像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左或向右平移个单位,由题意平移后的图像关于点,成中心对称验正常情况下紫色洋葱细胞各色,故,又∈则时递增,时递减,故,分综上分解法如图分故所以又分故分在中即故当时,直线分Ⅱ依题意,要在上找点,使得⊥只需分设,可推测的中点即为所求的点分因为⊥,⊥,所以⊥面即分又,故⊥即⊥分解法二建立如图所示的空间直角坐标系,分则所以,分又由的个法向量分设与面所成的角为,则分依题意有,解得分故当时,直线与平面所成的角的正切值为分若在上存在这样的点,设此点的横坐标为,分则分依题意,对任意的要使,只需对恒成立分,分即为的中点时,满足题设的要求分解即在恒成立令故时则在,递增,时则在,∞递减,则......”。
4、“.....令得,且递减,递增,故则,由递增,则有同理,又,即得,即证证明连结,则⊥,且为等腰三角形,则根据切割线定理,有,解,则在直角中,又,由相交弦定理得故的半径,弧长解由知,故当时,证明法,相加得,即证法二由柯西不等式得即得湖北省黄冈中学年秋季期中考试高三数学试卷理科第Ⅰ卷选择题选择题本大题共小题,每小题分,在每小题给出的四个选项中,只有项是符合题目要求的复数在复平面上对应的点位于第象限第二象限第三象限第四象限已知∈,则是的充分不必要条件必要不充分条件充要条件既非充分也非必要条件设为等差数列,公差,为其前项和,若,则已知函数是定义在上的奇函数,且当时则下图给出的是计算的值的个程序框图,其中判断框内应填入的条件是将函数的图象向左平移个单位,所得到的函数图象关于轴对称,则的个可能取值为求曲线与所围成图形的面积,其中正确的是设为三条不同的直线,为个平面,下列命题中正确的个数是若⊥,则与相交若⊥,⊥,则⊥若∥,∥,⊥,则⊥④若∥,⊥,⊥,则∥如图,已知,点在线段上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示......”。
5、“.....左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,中正确的是设为三条不同的直线,为个平面,下列命题中正确的个数是若⊥,则与相交若⊥,⊥,则⊥若∥,∥,⊥,则⊥④若∥,⊥,⊥,则∥如图,已知,点在线段上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列......”。
6、“.....营业部的分布为西安市家,榆林市家,目前各营业部均存在不同程度的亏损。总体财务结构图如下单位万元本资料来自本资料来自二开源证券增资面临的历史发展机遇我们分析宏观经济发展形势认为,中国目前政治稳定,经济繁荣昌盛,保持着较快水平的持续增长。中国的保持着年均左右的递增速度,而年的成功入世,为国内企业的外向型发展提供了历史性的机遇。西部大开发是中国政府的项重要政策,国家为西部的企业提供了最大幅度的政策优惠,并推荐国内外知名公司来西部发展。这些政策有利于西部优势海航酒店山西航空有限责任公司金鹿公务机有限公司扬子江快运航空有限公司等。截止年月,航空运输板块拥有机型配置座级系列的飞机架,开通国内国际航线多条。机场板块是以海口美兰机场有限责任公司为核心的机场产业,实行专业性产业板块管理,现主要有航空运输板块机场板块酒店旅游板块和相关产业板块。航空运输板块以海南航空股份有限公司股,股为核心企业,所辖企业有中国新华航空有限责任公司长安航空有限责任公司下游产业延伸发展而成的集航空运输业酒店旅游业机场管理业和其他相关产业为体的企业集团。截止年月,集团资产总值约亿元人民币......”。
7、“.....集团最高决策机构为海航集团有限公司董事局。海航集团对所从事的产业中国股市今后将会在相当长的个时期内出现缓步盘升的牛市,股市的好转为证券公司拓展系列新业务创造了良好的市场环境。三海航集团简介海航集团是年月经国家工商行政管理局批准组建,以航空运输业为主体,向上展中推陈出新,些与信托业保险业的联合产品开始推向市场,并获得了投资者的高度认可。在经历了政策熊市后,中国股市已经逐步盘出谷底,出现了平缓盘升的趋势,而随着等资本市场开放政策的出台,我们预测财政厅借款实收资本开源投入实收资本。本资料来自本资料来自我们亦注意到,中国证券行业在经历金融风暴和几次大的政策调整后,已经有逐步复苏的迹象。部分券商敢于在业务拓在竞争中取得优势地位。陕西省生产资金管理局开源证券国债经销部资产保证金证券类资产非证券类资产其中北大街土地其他长期资产负债客户证券款银行借款净资产资产大量的应收款房产等借款发展空间。中国目前有余家证券公司,行业内竞争激烈,而经纪业务的价格放开,级市场实施通道制度,导致多家公司在新的政策环境下连连失利,经营普遍出现亏损。各个证券公司必须致力于寻求富有特色的发展之路,才能......”。
8、“.....有着得天独厚的发展优势,近几年西安市的国内生产总值直高于国家平均发展水平。宏观环境可以保证开源证券立足西部立足陕西立足西安谋求更大发。西安市是西部发展的桥头堡和区域金融政治经济文化中心,有着得天独厚的发展优势,近几年西安市的国内生产总值直高于国家平均发展水平。宏观环境可以保证开源证券立足西部立足陕西立足西安谋求更大发展空间。中国目前有余家证券公司,行业内竞争激烈,而经纪业务西安市是西部发展的桥头堡和区域金融政治经济文化中心,有着得天独厚的发展优势,近几年西安市的像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,为奇函数,故当时当时,对恒成立,即,即,解由知分分又......”。
9、“.....分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。