1、“.....故,又∈则时递增,时递减,故,分综上分解法如图分故所以又分故分在中即故当时,直线分Ⅱ依题意,要在上找点,使得⊥只需分设,可推测的中点即为所求的点分因为⊥,⊥,所以⊥面即分又,故⊥即⊥分解法二建立如图所示的空间直角坐标系,分则所以,分又由的个法向量分设与面所成的角为,则分依题意有,解得分故当时,直线与平面所成的角的正切值为分若在上存在这样的点,设此点的横坐标为,分则分依题意,对任意的要使,只需对恒成立分,分即为的中点时,满足题设的要求分解即在恒成立令故时则在,递增,时则在,∞递减,则,依题意,令得,且递减,递增,故则,由递增,则有同理,又,即得,即证证明连结,则⊥,且为等腰三角形,则根据切割线定理,有,解,则在直角中,又,由相交弦定理得故的半径,弧长解由知,故当时,证明法,相加得,即证法二由柯西不等式得即得湖北省黄冈中学年秋季期中考试高三数学试卷理科第Ⅰ卷选择题选择题本大题共小题,每小题分,在每小题给出的四个选项中,只有项是符合题目要求的复数在复平面上对应的点位于第象限第二象限第三象限第四象限已知∈,则是的充分不必要条件必要不充分条件充要条件既非充分也非必要条件设为等差数列......”。
2、“.....为其前项和,若,则已知函数是定义在上的奇函数,且当时则下图给出的是计算的值的个程序框图,其中判断框内应填入的条件是将函数的图象向左平移个单位,所得到的函数图象关于轴对称,则的个可能取值为求曲线与所围成图形的面积,其中正确的是设为三条不同的直线,为个平面,下列命题中正确的个数是若⊥,则与相交若⊥,⊥,则⊥若∥,∥,⊥,则⊥④若∥,⊥,⊥,则∥如图,已知,点在线段上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,中正确的是设为三条不同的直线,为个平面,下列命题中正确的个数是若⊥,则与相交若⊥,⊥,则⊥若∥,∥,⊥,则⊥④若∥,⊥,⊥......”。
3、“.....已知,点在线段上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则染色剂进入实验色素透出实得分由的图像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,为奇函数,故当时当时,对恒成立,即,即,解由知分分又......”。
4、“.....分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形......”。
5、“.....在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯实数根的的取值范围为分解法化简得分由的图像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左或向右平移个单位,由题意平移后的图像关于点......”。
6、“.....关键是领导干部要以身作则率先垂范。各级领导干部特别是年轻干部,要弘扬艰苦朴素勤俭建业的精神,先天下之忧而忧,后天下之乐而乐,在实践中不断加强自国的目标,强调加强社会主义核心价值体系建设。党的十八大对建设社会主义文化强国作出部署。总纲增写了建设社会主义文化强国加强社会主义核心价值体系建设的内容。作这样的充实,有利于全党牢牢把握发展社会主义个人简历模板大全,求职简历范文,市场调查报告范文,社会实践调查报告总结论体系,确立了中国特色社会主义制度。同时强调,全党要倍加珍惜长期坚持和不断发展这条道路这个理论体系这个制度。其中,确立了中国特色社会主义制度是这次修改新增写的内容。中国特色社会主义制度,就是人民代表大会制度的根本政治制度,中国共产党领导的多党合作和政治协商制度民族区域自治制度以及基层群众自治制度等基本政治制度,中国特色社会主义法律体系,公有制为主体多种所有制经济共同发展的基本经济制度讲担当转作风抓落实,单位员工转正申请书,毕业个人简历自我鉴定色社会主义必须坚持和贯彻的指导思想。这段话深刻阐明了科学发展观的时代背景科学内涵精神实质和贯彻落实科学发展观的基本要求......”。
7、“.....阐明了科学发展观提出的时代背景,这个新的发展要求就是新世纪新阶段我国发展的阶段性特征对发展提出的新要求。以人为本全面协调可持续发展是科学发展的基简历模板大全,求职简历范文,市场调查报告范文,社会实践调查报告总结问题。对此,我们定要有清醒的认识,用发展的眼光去分析,用发展的办法去解决,把改革发展稳定的各项工作不断推向深入。乡镇人大作为基层人民群众的代表机关和民意机关,处在民主法制建设的最前沿,必须以高度的政治责任感和紧迫感,认真履行法定职权,加大工作措施,扎实努力工作,积极投身经济建设,充分发挥应有作用。要充分认识乡镇人大工作的极端重要性。乡镇人大作为最基层的国家权力机关,在实施依法治国,建设社讲担当转作风抓落实,单成的水分子数和减少的相对分子质量分别为答案解析图中有三条肽链,中间条为环状,故失去水分子数为题组组成蛋白质的氨基酸种类与结构的判断关于生物体内氨基酸的叙述,正确的是氨基酸是蛋白质分子的单体,由氨基和羧基组成组成蛋白质的氨基酸共有的结构是每个氨基酸分子都只含有四种元素组成人体的氨基酸都在人体内合成答案解析氨基酸的结构通式为,不同的氨基酸基不同......”。
8、“.....下面是三种化合物的结构简式,下列有关三种化合物的叙述,的是三种化合物可以用个结构通式表示三种化合物的共同点之是都含有个氨基个羧基三种化合物都不能与双缩脲试剂发生紫色反应三种化合物两两结合形成的物质的游离氨基数相同答案解析正确,三种物质都是构成蛋白质的氨基酸,都可用氨基酸的结构通式表示,图中三种氨基酸共同点应为至少都含有个氨基个羧基正确,双缩脲试剂鉴定蛋白质产生紫色反应,是由于蛋白质中有肽键,氨基酸中无肽键,故不能与双缩脲试剂发生紫色反应正确,三种化合物两细胞各色,故,又∈则时递增,时递减,故,分综上分解法如图分故所以又分故分在中即故当时,直线分Ⅱ依题意,要在上找点,使得⊥只需分设,可推测的中点即为所求的点分因为⊥,⊥,所以⊥面即分又,故⊥即⊥分解法二建立如图所示的空间直角坐标系,分则所以,分又由的个法向量分设与面所成的角为,则分依题意有,解得分故当时,直线与平面所成的角的正切值为分若在上存在这样的点,设此点的横坐标为,分则分依题意,对任意的要使,只需对恒成立分,分即为的中点时,满足题设的要求分解即在恒成立令故时则在,递增,时则在,∞递减,则......”。
9、“.....令得,且递减,递增,故则,由递增,则有同理,又,即得,即证证明连结,则⊥,且为等腰三角形,则根据切割线定理,有,解,则在直角中,又,由相交弦定理得故的半径,弧长解由知,故当时,证明法,相加得,即证法二由柯西不等式得即得湖北省黄冈中学年秋季期中考试高三数学试卷理科第Ⅰ卷选择题选择题本大题共小题,每小题分,在每小题给出的四个选项中,只有项是符合题目要求的复数在复平面上对应的点位于第象限第二象限第三象限第四象限已知∈,则是的充分不必要条件必要不充分条件充要条件既非充分也非必要条件设为等差数列,公差,为其前项和,若,则已知函数是定义在上的奇函数,且当时则下图给出的是计算的值的个程序框图,其中判断框内应填入的条件是将函数的图象向左平移个单位,所得到的函数图象关于轴对称,则的个可能取值为求曲线与所围成图形的面积,其中正确的是设为三条不同的直线,为个平面,下列命题中正确的个数是若⊥,则与相交若⊥,⊥,则⊥若∥,∥,⊥,则⊥④若∥,⊥,⊥,则∥如图,已知,点在线段上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。