图像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯实数根的的取值范围为分解法化简得分由的图像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左或向右平移个单位,由题意平移后的图像关于点,成中心对称验正常情况下紫色洋葱细胞各色,故,又∈则时递增,时递减,故,分综上分解法如图分故所以又分故分在中即故当时,直线分Ⅱ依题意,要在上找点,使得⊥只需分设,可推测的中点即为所求的点分因为⊥,⊥,所以⊥面即分又,故⊥即⊥分解法二建立如图所示的空间直角坐标系,分则所以,分又由的个法向量分设与面所成的角为,则分依题意有,解得分故当时,直线与平面所成的角的正切值为分若在上存在这样的点,设此点的横坐标为,分则分依题意,对任意的要使,只需对恒成立分,分即为的中点时,满足题设的要求分解即在恒成立令故时则在,递增,时则在,∞递减,则,依题意,令得,且递减,递增,故则,由递增,则有同理,又,即得,即证证明连结,则⊥,且为等腰三角形,则根据切割线定理,有,解,则在直角中,又,由相交弦定理得故的半径,弧长解由知,故当时,证明法,相加得,即证法二由柯西不等式得即得湖北省黄冈中学年秋季期中考试高三数学试卷理科第Ⅰ卷选择题选择题本大题共小题,每小题分,在每小题给出的四个选项中,只有项是符合题目要求的复数在复平面上对应的点位于第象限第二象限第三象限第四象限已知∈,则是的充分不必要条件必要不充分条件充要条件既非充分也非必要条件设为等差数列,公差,为其前项和,若,则已知函数是定义在上的奇函数,且当时则下图给出的是计算的值的个程序框图,其中判断框内应填入的条件是将函数的图象向左平移个单位,所得到的函数图象关于轴对称,则的个可能取值为求曲线与所围成图形的面积,其中正确的是设为三条不同的直线,为个平面,下列命题中正确的个数是若⊥,则与相交若⊥,⊥,则⊥若∥,∥,⊥,则⊥④若∥,⊥,⊥,则∥如图,已知,点在线段上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,中正确的是设为三条不同的直线,为个平面,下列命题中正确的个数是若⊥,则与相交若⊥,⊥,则⊥若∥,∥,⊥,则⊥④若∥,⊥,⊥,则∥如图,已知,点在线段上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则染色剂进入实验色素透出实得分由的各样艺又扪着有人卧,遂走出。径登船,夜解维。比明,已行百余里。其家迹其血至江岸,遂陈状之。主讼者穷诘岸上居人,云日夜,有客船夜径发。即差人追及,械于圉室,拷掠备至,具实吐之。唯不招杀人。其家以庖刀纳于府主矣。府主乃下令曰日大设宴,合境庖丁,宜集于球场。以候宰杀。屠者既集,乃传令曰今日既已,可翌日而至。乃各留刀于厨而去。府主乃命取诸人刀,以杀人之刀,换下口。来早,各令诣衙请刀,诸人皆认本刀而去。唯屠最在后,不肯持刀去。府主乃诘之,对曰此非刀。又诘以何人刀,即曰此合是乙者。乃问其住止之处,即命擒之,则已窜矣。于是乃以他囚之合处死者,以代商人之子。侵夜毙之重要的溶剂,酒精汽油等也是常见的溶剂。了解饱和溶液和溶解度的含义。能进行溶质质量分数的简单计算。认识溶质质量分数的含义,能配制定溶质质量分数的溶液。能举例说明结晶现象。能说出些常见的乳化现象。了解溶液在生产生活中的重要意义。金属与金属矿物了解金属的物理特征,认识常见金属的主要化学性质,了解防止金属腐蚀的简单方法。知道些常见金属铁铝等矿物,知道可用铁矿石炼铁。知道在金属中加入其他元素可以改变金属材料的性能,知道生铁和钢等重要合金。认识金属材料在生产生活和社会发展中的重要作用。认识废弃金属对环境的影响和回收金属的重要性。生活中常见的化合物认识常见酸碱的主要性质和用途,知道酸碱的腐蚀性。初步学会常见酸碱溶液的稀释方法。了解用酸碱指示剂酚酞石蕊和试纸检验溶液酸碱性的方法。知道酸碱性对人体健康和农作物生长的影响。化剂对化学反应的重要作用。初步形成在定条件下物质可以转化的观点。认识几种化学反应初步认识常见的化合反应分解反应置换反应和复分解反应,学科网能看懂些商品标签上标示的组成元素及其含量。四物质的化学变化学习内容标准化学变化的基本特征认识化学变化的基本特征,初步了解化学反应的本质。知道物质发生化学变化时伴随有能量变化的元素。形成化学变化过程中元素不变的观念。物质组成的表示能说出几种常见元素的化合价。能用化学式表示些常见物质的组成。利用相对原子质量相对分子质量进行物质组成的简单计算。来源来源学科网认识化学元素认识氢碳氧氮等与人类关系密切的常见元素。记住并能正确书写些常见元素的名称和符号。知道元素的简单分类。能根据元素的原子序数在元素周期表中找到指定等都是构成物质的微粒。能用微粒的观点解释些常见的现象。知道原子是由原子核和核外电子构成的。知道原子可以结合成分子同元素的原子和离子可以互相转化,初步认识核外电子在化学反应中的作用。和混合物单质和化合物有机化合物和无机化合物。能从元素组成上认识氧化物。知道无机化合物可以分成氧化物酸碱盐。认识物质的多样性。微粒构成物质认识物质的微粒性,知道分子原子离子生活中的用途。知道些常用化肥的名称和作用。列举生活中些常见的有机物,认识有机物对人类生活的重要性。三物质构成的奥秘学习内容标准化学物质的多样性认识物质的三态及其转化。区分纯净物的腐蚀性。初步学会常见酸碱溶液的稀释方法。了解用酸碱指示剂图像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞上,且,设,则等于已知曲线,点,及点从点观察点,要使视线不被曲线挡住,则实数的取值范围是,∞∞∞∞,四面体的三视图如图所示,正视图俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为设函数在上存在导数有,在,∞上,若,则实数的取值范围为第Ⅱ卷非选择题二填空题本大题共小题,每小题分,共分已知关于的二项式展开式的二项式系数之和为,常数项为,则实数的值为变量满足条件,则的最小值为的内角所对的边分别为,且成等比数列,若则的值为设为实常数,是定义在上的奇函数,且当时,若对切成立,则的取值范围是三解答题为必做题本小题,故解析如图,易知的面积最大解析令函数为奇函数时函数在上为增函数,又由题可知所以函数在上为增函数由可知,即,所以解析二项式系数和为,有,第项,令得,常数项为解析作出可行域,当,时,有最小值为解析等比,则,又,故解析时又对切恒成立,故,当时且为奇函数,故当时当时,对恒成立,即,即,解由知分分又,故为等差数列分由知,分得分分解将的图像向左平移个单位长度可得的图像,保持纵坐标不变,横坐标变为原来的倍,可得的图像,故分令又,单调递增,单调递减,单调递增时,时故方程有唯实数根的的取值范围为分解法化简得分由的图像关于点,成中心对称,则分即,代入得,整理得对∈恒成立,则分法是奇函数,是将的图像向左或向右平移个单位,由题意平移后的图像关于点,成中心对称验正常情况下紫色洋葱细胞
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 5 页
第 2 页 / 共 5 页
第 3 页 / 共 5 页
第 4 页 / 共 5 页
第 5 页 / 共 5 页
预览结束,喜欢就下载吧!
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。