1、“.....约为浸泡的时间,。表为所计算的合金自腐蚀速率。为了对比合金与纯铝,纯锌的自腐蚀速率,纯铝和纯锌在不同的电解液中自腐蚀速率计算如表,表所示。表为纯铝在不同电解液中的自腐蚀速率,表为纯锌在不同电解液中的自腐蚀速率。腐蚀溶液试样状态放电前质量放电后质量失重自腐蚀速率铸态变形铸态变形无水乙醇铸态变形腐蚀溶液腐蚀前质量腐蚀后质量失重表面积自腐蚀速率无水乙醇腐蚀溶液腐蚀前质量腐蚀后质量失重表关键。曲线在腐蚀过程中,由于铝合金的表面生成了保护膜,阳极过程受到膜的阻碍,金属的溶解速度大为降低,结果使阳极电位向正方向剧烈变化,这种现象称为钝化。钝化,即电阻极化,是造成合金的阳极极化的原因之,金属的电位往正方向移动。阴极般没有电阻极化。图为纯铝,纯锌及变形前后合金在溶液中的曲线。在碱性溶液中,铝合金的腐蚀主要是由阳极反应所控制,合金发生电化学反应时阳极极化程度越大,则电极反应阻力越大,铝阳极电化学溶解放电过程受阻滞越严重。这虽然在种程度上能减小铝阳极的腐蚀量,但对电池阳极而言却是非常不利的,因此必须尽量减少铝阳极的极化作用......”。
2、“.....纯锌试样要负的多,尤其是变形试样。,表为纯铝,纯锌及变形前后铝阳极合金在溶液中的自腐蚀电位和自腐蚀电流密度,由图中极化曲线获得。铝合金的腐蚀电位反映其在热力学上的腐蚀倾向,而腐蚀电流密度则是表征其在动力学上的腐蚀速度。由表可得,变形合金腐蚀电位达到最负,为,表明变形合金较易发生活化溶解。由腐蚀电流密度变化可知,轧制后合金腐蚀电流密度降低,变形后合金试样的腐蚀电流密度最低,这表明轧制后铝合金腐蚀速率减小,耐腐蚀性增强,有利于提高合金利用率。轧制后合金腐蚀速率减小可能是由于冷变形后合金中存在大量的位错,电极反应过程中形成的腐蚀产物容易粘附于错位塞积的位置,阻碍了离子通过,增加了反应阻力。,试样纯铝纯锌铸态合金变形合金自腐蚀电位自腐蚀电流密度图为纯铝,纯锌及变形前后合金在无水乙醇溶液中的曲线。从图中仍能观察到变形合金试样的腐蚀电位最负。,表为纯铝,纯锌及变形前后合金在无水乙醇溶液溶液中的自腐蚀电位和自腐蚀电流密度,由图中极化曲线得到。对比表表可发现,后者腐蚀电位均正移,且腐蚀电流密度均减小。通过陈启元等人研究发现,乙醇能降低铝阳极在碱性体系中的自腐蚀速率......”。
3、“.....导致析氢速率降低电极反应产物难以脱落,并在电极表面沉积,从而增大了合率升高,改善了铝合金的放电性能。再者合金在电解液中的阳极利用率,特别是变形合金在远远超出均高于纯锌在碱溶液中的阳极利用率,则可以选用变形合金代替纯锌作阳极材料。溶液试样状态放电前质量放电后质量电流失重阳极利用率纯锌铸态变形纯锌铸态变形纯锌铸态变形自腐蚀速率的的研究进展电池刘稚惠,李振亚静止电解液中性铝空气电池设计电源技术章宪电动车专用高能铝空气电池中国,实用新型吴安臣金属燃料电池通过科技成果鉴定创造田文增,陈小华,林立电池用铝合金阳极材料的研究进展船电技术秦学,李振压,余远彬铝合金阳极活化机理研究进展电源技术,,秦学铝阳极电化学行为及活化机理的研究天津天津大学李振亚,秦学,余远彬,等含镓锡的铝合金在碱性溶液中的阳极行为物理化学学报项东,刘科高,许斌固溶处理对铝合金组织和性能的影响轻合金加工技术,龙萍,李庆芬固溶处理对阳极电化学性能的影响分析装备环境工程,张林森,王双元,王为热处理对铝合金电极性能的影响电源技术研究与设计,,宋曰海高性能牺牲阳极材料的研究北京北京化工大学齐公台,郭稚孤,魏伯康......”。
4、“.....官迪凯,毛志伟,等热轧道次变形量对铝阳极组织结构和电化学性能的影响中南大学学报自然科学版李卿,尹延西,江洪林高活性铝合金阳极材料的电化学性能材料保护郝庆国,文九巴,贺俊光,等冷变形及热处理工艺对铝合金阳极材料组织与性能的影响中国材料研讨会论文集蒋福林,张辉,蒙春标,等铝合金高温热压缩过程的再结晶材料热处理学报沈东碱性铝空气电池缓蚀剂的研究湖南中南大学卜路霞,梁广川,欧秀芹,等空气电极防水透气膜的工艺研究河北工业大学学报陈启元,韩雪涛,胡慧萍铝阳极在乙醇有机体系中的腐蚀与电化学行为有色金属冶炼部分,致谢此次毕业设计是在马景灵老师的指导下进行的,我衷心感谢马老师的悉心教导。在实验阶段,马老师就对我们每个步骤都提出明确要求,在实验过程中,对于出现的种种问题,马老师都能及时和我们起分析问题,解决问题。在整个毕业设计过程中,马老师直关心着我的实验以及论文的进展情况,为此我要表达诚挚的感谢。衷心感谢在毕业设计过程中给予帮助的老师们,感谢老师创造的优越的研究环境和工作条件,老师们辛苦了。当然要感谢课题组中与我朝夕相处的各位师兄弟姐妹......”。
5、“.....在此向帮助过我的老师同学致以诚挚的谢意和衷心的祝福。果与分析结果统计合金自腐蚀速率的计算见公式自腐蚀速率Ŋ∆式中,∆失重,即腐金表面的电阻,使铝的电极反应变得困难,开路电位正移。,试样纯锌纯铝铸态合金变形合金自腐蚀电位自腐蚀电流密度放电性能结果与分析将待测铝电极预先称重,然后在恒电位下待电流稳定在后开始测量。将前面所制的空气电极放置好,注入溶液,连接好设备后,通入电流,计时后,极化结束。实验结束后将试样洗净,吹干,烘干,称重,记录数据。阳极利用率计算公式如下ŋ极化∆式中ŋ阳极利用率极化阳极极化电流时间∆失重质量法拉第常数。表为不同试样在无水乙醇溶液中的阳极利用率。在电解液中合金作为阳极材料,部分放电电荷消耗于自身构成微电池发生的腐蚀,另部分流入电池阴极对外做功。这样在任种电解液中的铝合金阳极都不能被完全利用,因此合金的阳极利用率不能达到。由表可知,在碱性溶液中试样的阳极利用率均低于,这说明在碱性电解液中存在较为严重的自腐蚀行为结合图可以看出相比碱性溶液,在无水乙醇溶液中,由于含水量的减小使开路电位正移,自腐蚀减弱,电极表面腐蚀溶解均匀,阳极极化减少......”。
6、“.....其受力是最大的,所以其变形量也是比较大的。转弯工况的分析离心力会导致赛车在急转弯时产生侧向载荷,所以车架应能承受侧向载荷。赛车经常有高速过弯的情况,此时车速较高向心加速度较大可达到以上,转弯工况即模拟赛车以加速度左转弯,动载因数取,此时车架所受的侧向力侧向力同样由悬架系统传递给车架,故视为平均作用在悬架和车架的个连接点处。,即模拟整车的转弯工况。转弯工况下的分析结果如下图车辆工程专业毕业设计论文图车架应力分析结果图车架应变分析结果结果表明车架结构受到的最大应力部位是各个梁单元接触的地方,最大应力为,远远低于车架所选用钢管材料的许用应力为。而车架整体变形量最大的地方是主环顶部钢管,其变形量为,这种最大变形量远低于车架许可承载变形量其他变形较大的发生在主环底部为,满足设计要求。分析的结果与实际的受力情况相符合,因为主环底部不仅是车手座椅安装固定点之,而且还是发动机安装固定点之,其受力是最大的,所以其变形量也是比较大的。综上所述分析可知,无论何种工况,发动机舱底部和主环均为应力较大点。为避免车架发生断裂,可采用具有高屈服强度的钢材料焊接发动机舱......”。
7、“.....能有效降低应力集中现象。车辆工程专业毕业设计论文车架刚度分析车架扭转刚度分析车架的扭转刚度决定车辆在扭曲路面行驶时悬架硬点的位置精度,是影响赛车性能的重要指标之,国外大多数参赛车队均将车架的扭转刚度作为车架设计重点。在分析车架的扭转刚度时,施加的约束条件为在车架与后悬架连接点处施加,和等个方向的位移约束在车架与前悬架左右连接点处施加个方向相反的的压力,通过仿真分析计算该硬点的作用力变形。如下图所示图车架扭转变形示意有图可知最大变形为。假设悬架硬点间的距离为,则作用于车架的扭矩车辆工程专业毕业设计论文的强制位移对应的车架转角则车架扭转刚度由上述分析可知,则车架扭转刚度为提高车架刚度最直接的方法为加固更多的管件,但这增加车架质量,因此单位质量的扭转刚度显得尤为重要该车架的质量为,则单位质量扭转刚度为。由于比赛偶然因素较多,车架扭转刚度对最终的比赛成绩影响并不著尽管如此,尽可能提高单位质量下的扭转刚度仍是设计车架的目标,可采取的措施有尽可能多地使车架管件构成三角形结构由于三角形固有的稳定性可很好地在焊接节点间传递力......”。
8、“.....车架截面积随之增大,可提高车架结构的抗扭转刚度。车架弯曲刚度分析车架的弯曲刚度指车架在承受垂直载荷时挠曲变形的程度。弯曲刚度会影响整车轴距以及车轮定位参数,进而影响整车的操纵稳定性。将车架视为简支梁,支点为与前后悬架的连接点。根据材料力学中简支梁挠度的计算方法,可近似计算车架的弯曲刚度计算公式为式中为车架的弯曲刚度为垂直力为力作用点到前悬架约束的距离为力作用点到后悬架约束的距离为前后悬架约束的距离为车架底车辆工程专业毕业设计论文板最大挠曲变形约束后悬架连接点的自由度,约束前悬架连接点极利用词继蚀前与腐蚀后试样的质量的差试样的表面积,约为浸泡的时间,。表为所计算的合金自腐蚀速率。为了对比合金与纯铝,纯锌的自腐蚀速率,纯铝和纯锌在不同的电解液中自腐蚀速率计算如表,表所示。表为纯铝在不同电解液中的自腐蚀速率,表为纯锌在不同电解液中的自腐蚀速率。腐蚀溶液试样状态放电前质量放电后质量失重自腐蚀速率铸态变形铸态变形无水乙醇铸态变形腐蚀溶液腐蚀前质量腐蚀后质量失重表面积自腐蚀速率无水乙醇腐蚀溶液腐蚀前质量腐蚀后质量失重表关键。曲线在腐蚀过程中,由于铝合金的表面生成了保护膜......”。
9、“.....金属的溶解速度大为降低,结果使阳极电位向正方向剧烈变化,这种现象称为钝化。钝化,即电阻极化,是造成合金的阳极极化的原因之,金属的电位往正方向移动。阴极般没有电阻极化。图为纯铝,纯锌及变形前后合金在溶液中的曲线。在碱性溶液中,铝合金的腐蚀主要是由阳极反应所控制,合金发生电化学反应时阳极极化程度越大,则电极反应阻力越大,铝阳极电化学溶解放电过程受阻滞越严重。这虽然在种程度上能减小铝阳极的腐蚀量,但对电池阳极而言却是非常不利的,因此必须尽量减少铝阳极的极化作用。从图中可看出合金的电位相比纯铝,纯锌试样要负的多,尤其是变形试样。,表为纯铝,纯锌及变形前后铝阳极合金在溶液中的自腐蚀电位和自腐蚀电流密度,由图中极化曲线获得。铝合金的腐蚀电位反映其在热力学上的腐蚀倾向,而腐蚀电流密度则是表征其在动力学上的腐蚀速度。由表可得,变形合金腐蚀电位达到最负,为,表明变形合金较易发生活化溶解。由腐蚀电流密度变化可知,轧制后合金腐蚀电流密度降低,变形后合金试样的腐蚀电流密度最低,这表明轧制后铝合金腐蚀速率减小,耐腐蚀性增强,有利于提高合金利用率......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。