帮帮文库

返回

(定稿)年生产千吨电炉锌粉项目立项申报材料1(喜欢就下吧) (定稿)年生产千吨电炉锌粉项目立项申报材料1(喜欢就下吧)

格式:word 上传:2022-06-25 19:55:00

《(定稿)年生产千吨电炉锌粉项目立项申报材料1(喜欢就下吧)》修改意见稿

1、“.....作为参照,采用控制变量的方法,使得和不变,改变期望启发因子的值。图所示的是当时的运行结果,图所示的是当时的运行结果。从检测结果中可以看出,随着值变大,算法的收敛性能有变差的趋势,导致蚁群搜索最佳路径的随机性减弱,其图像检测边缘边模糊。越大,它所在的状态转移概率就越接近贪心规则,所导致的结果是检测出来的边缘信息不够完整。图第九组基于蚁群算法的图像边缘检测运行结果信息素挥发因子对蚁群算法的影响具有两面性,它表示的是信息素随着时间推移的挥发程度。第九组数据控制和不变,改变信息素挥发因子的值。从图中可以看出,的改变使得之前第组数据未被检测出的边缘被检测出来了,然而也消失了部分的边缘。信息素挥发因子值的改变并没有从很大程度上影响图像的边缘。上海工程技术大学毕业设计论文基于蚁群算法的图像边缘检测,,,,图第十组基于蚁群算法的图像边缘检测运行结果根据上文对蚁群算法参数的对比研究,将参数设置为,,得出的检测效果最佳,并且边缘像素较宽,如图所示。与传统方法的比较本文将蚁群算法与传统的边缘检测算子进行比较......”

2、“.....对和方向的边缘检测效果不错,边缘定位比较准确,但遗失边界比较容易发生,并且因为没有对成像采用平滑处理,所以干扰的能力并不良好。算子针对算子容易受到干扰的缺陷,所采用的算法是先进行加权平均,然后通过微分运算,从而使干扰的算子具有良好的抗干扰能力,筛选步骤边缘可以得出缘上的至少两个像素。类似算子可以得到边缘的相对精确位置和去向。然而,由于采用了局部平均的方法,这导致检测结果比较轻易出现多像素宽上海工程技术大学毕业设计论文基于蚁群算法的图像边缘检测度和遗失边缘。与算子和算子拥有相似的方法,它们都是通过局部差分平均的方法来寻找边缘的,这反映三对中的像素的像素值的概念上的差异的平均的边缘。所以此算子具有良好的抗噪性,但是假边界也不能完全忽视,使得边缘检测个多像素的易宽度。算子确定个阶跃边缘的精确定位,二阶微分算子的边缘的方向过于依赖的图像。这个算子对抗干扰能力不是很好,能使干扰的成分得到增加,这两个特点使该算子不能识别出边缘的方向性数据,造成些间断的凸边,所以该算子的抗干扰能力并不算很好。但是算子确定位置确切,我们可以发现它个很好的优势......”

3、“.....然后拉普拉斯边缘检测,从而有效地克服了拉普拉斯算子与差的抗干扰能力和缺点,不过该算子的操作的同时干扰可以比较平滑原始尖锐的边缘,结果不会显示边缘。此外,高斯函数中参数的选择是特别重要的。对较高频率的抗干扰作用会随着的变大而变大,通频带变窄,能够使得虚假边缘不易被检出,但该问题是由边缘引起被平滑,从而产生的些边缘点的损失。相比之下,更少的带宽被确定扩大图像细节在更高的频率,很容易识别,但抗干扰性能下降,容易出现假边缘的可能。算子通过算出值,确定的八个方向上的平均差,从而使边缘检测,以获得良好的结果。该算子能够甄别边缘的方向性数据,有很好的对边缘的抗干扰作用。它可以保持细化的图像,但开始得到的图像边缘是粗糙的,大部分的应用中,阈值的方法来得到更清晰的边缘图像。然而,加工后的图像,很容易从梯度值较小的弱边缘丢失。即使算子是从思维和创新优化检测而得,但实际效果并不定是最好的。操作类似于算子,使用相同的图像,从而使高斯平滑,因而有有更好的抗干扰能力和更好的鉴定边缘连接器的,定位精度的边缘。该算子使用双阈值边缘检测和过尺度的接口测试,更好的搜索条件的方向......”

4、“.....它是根据蚂蚁的性质,能够在自然界中找到食物与蚁巢间最短路径这智能行为而提出的种新型的进化算法,并提出了新的上海工程技术大学毕业设计论文基于蚁群算法的图像边缘检测边缘检测方法。通过系列的仿真实验改变参数值,得到了较佳的实验效果。实验结果表明,合适的参数值,可以成功的测试了图像中的边缘。与传统边缘检测算子相比,该算法具有强烈的鲁棒性,良好的正反馈特性和灵活的适应性,且能够快速收敛。作为这项研究的延续,建议进步检查参数值如何影响图像边缘的提取质量以及功能。蚁群算法目前已广泛应用于图像处理中,却仍旧存在些需要改进的地方。用适当的方式表达在将图像处理问题转换为蚁群算法的区域问题上。对于如何选择人工蚂蚁以及蚂蚁间路径上的信息素对象的分布状态等这些非直接通信的其他项目之间的合适的选择,这些问题都妨碍了使用蚁群算法来进行图像边缘检测。利用蚁群算法进行边缘检测时需要设置大量参数,这些参数的选择会显著影响检测结果,其知道的原则和方法以及迎战还没选择好合适的理论上,只能通过大量实验进行调整和比较,从而决定最佳参数的设置。由于蚁群算法展开搜索需要花费大量的时间......”

5、“.....例如将蚁群算法与其他优化算法诸如遗传算法免疫算法等相结合,以此提高算法性能,这样改善后的算法就可以用于求解决些复杂的问题图片。时至今日,蚁群算法仍然在不断改进和其在图像处理中地位的发展,特别是边缘检测将逐渐增加,上述些问题将得到解决。为了解决上述问题,有可能同时促进在更广泛的领域中的蚁群算法的发展,扩大其应用。由于蚁群算法的依赖,奠定长远发展基础,现已成为学术研究的焦点。随着计算机应用等技术的发展,不断提升和持续优化算法会使蚁群算法检测图像边缘有更好的机会。上海工程技术大学毕业设计论文基于蚁群算法的图像边缘检测参考文献张景虎,郭敏,王亚文基于改进的蚁群算法的图像边缘检测方法研究计算机应用,年期张景虎基于蚁群算法的图像边缘检测研究陕西陕西师范大学,邓祥龙图像边缘检测算法研究合肥工业大学,贾磊,焦淑红图像边缘检测技术研究综述科技风,年期,刘海军,彭绍雄,高传斌,邹强种基于信息素变化的改进蚁群算法兵工自动化,年期苗京,黄红星,程卫生,袁启勋基于蚁群模糊聚类算法的图像边缘检测武汉大学数学学院,年第期于勇,郭雷噪声图像中提取边缘的蚁群搜索算法电子与信息学报朱玲,施心陵,刘亚杰......”

6、“.....目前适用于宽调速的异步电机的调速性能及经济性已可与直流电机的相媲美。根据砂轮片的要求,现选用比较常用的系列三相异步电动机,这是由于系列三相异步电动机的功率等级和安装尺寸与国外同类型的先进产品相当,因而具有与国外同类型产品之间良好的互换性,供配套出口及引进设备替换。选取功率为,满载时的转速为。额定电流,功率因数,效率,额定转矩。轴承的选取及校核轴承的校核径向力派生力,中国地质大学江城学院毕业设计论文轴向力由于,所以轴向力为,当量载荷由于,,所以,,,。由于为般载荷,所以载荷系数为,故当量载荷为轴承寿命的校核轴的设计及校核求作用在皮带轮上的受力中国地质大学江城学院毕业设计论文图皮带轮受力图求轴上的载荷查得轴承的值为因为两个齿轮旋向都是左旋。故精确校核轴的疲劳强度截面上的转切应力为中国地质大学江城学院毕业设计论文由于轴选用,调质处理,所以,,。综合系数的计算由,经直线插入,知道因轴肩而形成的理论应力集中为,,轴的材料敏感系数为,......”

7、“.....扭转尺寸系数为,轴采用磨削加工,表面质量系数为,轴表面未经强化处理,即,则综合系数值为碳钢系数的确定碳钢的特性系数取为,安全系数的计算轴的疲劳安全系数为故轴的选用安全。中国地质大学江城学院毕业设计论文螺栓的校核由于采用单排螺纹连接固定,所以螺纹主要受预紧力和工作拉力这种受力方式在紧螺栓连接中比较常见,因而也是最重要的种这种紧螺栓连接承受轴向拉伸工作载荷后,由于螺栓和被连接件的弹性变形,螺栓所受的总拉力并不等于预紧力和工作拉力之和根据理论分析,螺栓的总拉力除和预紧力,工作才能更有效的利用时间其次是自己开始认识到手册的重要性,开始自己认为只要结构不干涉就好了,经过老师的番指导,使我认识到自己的这种思想,因为即使是个小小的螺钉也会让设计从头再来。我们应当认真做好每个小的细节,平时多思考,尽量使自己的结构安全可靠,不仅在设计中是这样,生活中也是这样。我们就要走向工作岗位......”

8、“.....假如我们不注意那些小的细节,那么不仅会造成国家财产损失,更有可能对人的生命造成威胁。我们即将走向社会,把毕业设计作为我们走向社会的次很好的锻炼,认真做好它,将来不管干什么都得认认真真做事,做好每件事。做个对得起自己和别人的人。中国地质大学江城学院毕业设计论文致谢在完成本设计之际,首先向尊敬的指导老师致以衷心的感谢。本设计是在老师的精心指导热情鼓励和支持下完成的。在整个课题的设计过程中,老师严谨的治学态度,高深的学术造诣和诲人不倦的精神,时刻激励着我,令学生受益无穷。在做毕业设计的田,作为参照,采用控制变量的方法,使得和不变,改变期望启发因子的值。图所示的是当时的运行结果,图所示的是当时的运行结果。从检测结果中可以看出,随着值变大,算法的收敛性能有变差的趋势,导致蚁群搜索最佳路径的随机性减弱,其图像检测边缘边模糊。越大,它所在的状态转移概率就越接近贪心规则,所导致的结果是检测出来的边缘信息不够完整。图第九组基于蚁群算法的图像边缘检测运行结果信息素挥发因子对蚁群算法的影响具有两面性,它表示的是信息素随着时间推移的挥发程度。第九组数据控制和不变,改变信息素挥发因子的值......”

9、“.....的改变使得之前第组数据未被检测出的边缘被检测出来了,然而也消失了部分的边缘。信息素挥发因子值的改变并没有从很大程度上影响图像的边缘。上海工程技术大学毕业设计论文基于蚁群算法的图像边缘检测,,,,图第十组基于蚁群算法的图像边缘检测运行结果根据上文对蚁群算法参数的对比研究,将参数设置为,,得出的检测效果最佳,并且边缘像素较宽,如图所示。与传统方法的比较本文将蚁群算法与传统的边缘检测算子进行比较。传统边缘检测算子的实验结果如图所示上海工程技术大学毕业设计论文基于蚁群算法的图像边缘检测图各种边缘检测算子检测结果算子使用局部差分方法甄别边缘,对和方向的边缘检测效果不错,边缘定位比较准确,但遗失边界比较容易发生,并且因为没有对成像采用平滑处理,所以干扰的能力并不良好。算子针对算子容易受到干扰的缺陷,所采用的算法是先进行加权平均,然后通过微分运算,从而使干扰的算子具有良好的抗干扰能力,筛选步骤边缘可以得出缘上的至少两个像素。类似算子可以得到边缘的相对精确位置和去向。然而,由于采用了局部平均的方法......”

下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
年生产千吨电炉锌粉项目立项申报材料.doc预览图(1)
1 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(2)
2 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(3)
3 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(4)
4 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(5)
5 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(6)
6 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(7)
7 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(8)
8 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(9)
9 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(10)
10 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(11)
11 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(12)
12 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(13)
13 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(14)
14 页 / 共 65
年生产千吨电炉锌粉项目立项申报材料.doc预览图(15)
15 页 / 共 65
预览结束,还剩 50 页未读
阅读全文需用电脑访问
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为word文档,建议你点击DOC查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档