1、“.....在中学解析几何中直线方程圆锥曲线方程中可以给出行列式的形式例求解过点,和而且焦点在轴上的椭圆方程解设所求的椭圆方程为,如果点,和,在椭圆上,则把它看成是关于和的齐次线性方程组,由于它有非零解,故椭圆方程可写为,代值得,即解得用行列式表示的三角形面积例在个平面内以三点......”。
2、“.....是的绝对值证明把平面中,为三点扩充到三维空间里,设它的坐标分别为,是任意的常数则,则面积为,应用行列式分解因式利用行列式分解因式主要在于构造,再根据行列式的性质来计算,以便于提取公因式例解因式解把第列加到第二列提取公因式利用行列式解代数不等式例求证不等式其中证明要证明只需证明把第二行发挥着重大作用最后又列举了行列式在现实中的应用,化抽象为具体......”。
3、“.....毛纲源线性代数解题方法技巧归纳武汉华中科技大学,贾兰香张建华线性代数南开大学出版社钱吉林高等代数题解精粹北京中央民族大学出版社,吕林根许子道解析几何高等教育出版社第四版,杨立群行列式在初等代数中的应用东北师范大学学报,华东师范大学数学系数学分析第二版北京高等教育出版社,贾计荣行列式在初等代数中的应用太原大学教育学院学报年增刊总第期李小刚线性代数及其应用科学出版社,刘剑平施劲松线性代数及其应用华东理工大学出版社......”。
4、“.....最为感谢的是我的指导老师姜贺老师,本文是在姜老师精心指导下完成的,从论文选题到研究最后到完成的过程中,姜老师始终细心的对我进行指导,并时常给我鼓励和支持。感谢他及时的纠正与指导,感谢他在百忙之中对我的关键性建议,感谢老师提供的相关材料。正是因为有老师的陪伴指导,才能使我的毕业论文完成的如此顺利成功。同时在此感谢四年来教授我知识的所有老师和陪伴我起成长的同学特别是和我朝夕相处的室友们,因为有你们,我的大学才如此精彩。虽然四年之中我也努力的完成了专业课程......”。
5、“.....因为有了那些同学与老师的帮助我的论文最终完成了,在此我表示真切的谢意,三行各自加到第行因为,所以得证利用行列式来证明拉格朗日中值定理证明拉格朗日中值定理时,般要构建个辅导函数,让它满足罗尔定理,于是般要构建个辅导函数,让它满足定理中的条件,从而得到结论下面给出证明拉格朗日中值定理设函数满足条件在闭区间,上连续,在开区间,上可导,则在,内至少存在有点,使得构建行列式型的辅助函数来证明证明设因在......”。
6、“.....在,内是可导的,故在,上是连续的,在,内是可导的,且,故由罗尔定理得,至少存在有点,,使得所以行列式在实际中的应用行列式在许多工程上的问题上,特别是在电子工程和控制论,能用拉普拉斯变换进行分析,在经济管理和工业生产中也有着很普遍的应用,可以根据行列式的性质来解决部分工程中的现实的问题例现有三块草地人工饲养羊,草地的草是样密集,生长速度也样这三块草地的面积分别为亩亩和亩,第块草地饲养只羊可维持周第二块草地饲养只羊可支撑周......”。
7、“.....每周每亩生长新草,第三片牧场可饲养只羊,每只羊每周吃草,由题意,得,即可以得到,这是以为未知数的齐次线性方程组,由于它有非零解,故它的系数行列式展开后得,即可以在第三块草地饲养只羊维持周总结行列式从线性方程组的问题引出来,成为线性代数中个最基本的工具在高深的高等数学领域里和现实生活里的实际问题当中,都有着直接或者间接的联系行列式般有很多种计算方法,综合性要求也很高,比较灵活......”。
8、“.....归纳法,化三角形法,范德蒙德行列式等本文先从行列式的定义以及性质出发,介绍了求解行列式比较基本的方法随后又介绍了几种比较常见的有技巧的方法,如加边法降阶法化三角形法等,加深了对行列式的研究最后还列举了用数学软件求解行列式的方法,给求行列式带来了极大的方便行列式在数学科学领域中有着普遍的应用,本文介绍了行列式在解析几何代数及其他课程中的应用通过这系列应用进步提高对行列式的认识......”。
9、“.....则任意项里至少有个为因子,故任项必为零,即原行列式的值为零利用行列式的性质计算例个阶行列式的元素都满足,那么叫做反对称行列式,证明奇数阶的反对称行列式的值等于证明由知即所以行列式可写为再由行列式的性质,得到当为奇数时,得......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。