1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....最简单的方法就是用该点的梯度幅度代替该点的灰度。此方法的缺点就是增强的图像仅仅是灰度变换比较陡峭的边缘轮廓,而灰度变化比较平缓或者比较均匀的地方则呈现黑色。为了突出物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与阈值作比较,如果大于阈值,该像素点的灰度值用其梯度值表示,否则用个固定的灰度值表示。综上所述,图像锐化算法主要包括三方面内容算取合适的梯度算子如拉普拉斯算子根据所选用的梯度算子计算图像各点的灰度值,得出各像素点的梯度值根据个像素点的梯度值选取合适的处理方法。图像锐化的功能实现由于设计要求原因,本次设计主要只研究运用梯度算子来实现图像的锐化处理。首先绘制出梯度锐化实现的流程图,流程图如图子程序开始复制图像利用算子求出,方向上梯度求出图像梯度模值利用梯度模值与原图灰度值按比例相加得到锐化图像返回图梯度锐化流程图根据上述流程图,编程实现图像锐化功能。图像锐化前后效果图对比如图平均平滑第次梯度锐化第二次梯度锐化第三次梯度锐化图图像锐化前后对比图由上图可清晰的看到图像经过锐化处理后的变化。图像锐化使原本经过图像平滑后变得模糊的边界轮廓得到了改善,是图像的边缘变得清晰了......”。
2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....反而会使图像变得模糊。因此进行图像锐化时需进行适度锐化图像,从而更好的得到所需图像。区域生长图像分割概述图像分割的方法和种类非常多,有些分割算法可以直接用于大多数图像,而另些则只适用于特殊类别的图像。般采用的方法有边缘检测边界跟踪区域生长区域分离和聚合等。本次设计则只研究区域生长的图像分割方法。图像分割算法般给予图像灰度只的不连续性或其相似性。不连续性是给予图像灰度的不连续变化分割图像,如针对图像的边缘有边缘检测边界跟踪等算法相似性是依据事先制定的准则将图像分割为相似的区域,如阈值分割区域生长等。图像分割在科学研究和工程技术领域有着广泛的应用。在工业上,应用于矿藏分析无接触式检测产品的精度和纯度分析等在生物医学上,应用于计算机断层图像光透视核磁共振病毒细胞的自动检测和识别等交通上,应用于车辆检测车种识别车辆跟踪等另外,在机器人视觉神经网络身份鉴定图像传输等各个领域都有着广泛的应用。区域生长区域生长是根据事先定义的准则将像素或者子区域聚合成更大区域的过程。其基本思想是从组生长点开始生长点可以是单个像素,也可以为个小区域......”。
3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....形成新的生长点,重复此过程直到不能生长为止。生长点和相邻区域的相似性判据可以是灰度值纹理颜色等多种图像信息。区域生长般有个步骤。选择合适的生长点。确定相似性准则即生长准则。确定生长停止条件。般来说,在无像素或者区域满足加入生长区域条件时,区域生长就会停止。图给出个区域生长的实例图为原图像,数字表示像素的灰度。以灰度为的像素为初始的生长点,记为,。在领域内,生长准则是待测点灰度值与生长带你灰度值相差为或者。那么,图所示,第次区域生长后,,与中心点灰度值相差都为,因而被合并。第二次生长后,如图所示被合并。第三次生长后,如图所示,被合并,至此,已经不存在满足生长准的的像素点,生长停止。原图像灰度矩阵生长点第次区域生长结果第二次区域生长结果第三次区域生长结果区域生长的优势和劣势优势区域生长通常能将具有相同特征的联通区域分割出来。区域生长能提供很好的边界信息和分割结果。区域生长的思想很简单......”。
4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....在生长过程中的生长准则可以自由的指定。可以在同时刻挑选多个准则。劣势计算代价大。噪声和灰度不均可能会导致空洞和过分割。对图像中的阴影效果往往不是很好。区域生长的实现首先绘制出区域生长实现的流程图,如图所示子程序开始图像预处理锐化选择种子点迭代判断区域产生二值化图像返回图区域生长流程图根据上述流程图,可编程实现区域生长功能。在读入图片点击区域生长功能键以后,系统会自动弹出个名为的对话框,如图所示图点击区域生长按键后弹出的对话框此时,操作人员可以方便快捷的在该对话框中的图片上选择个所需点作为种子点进行区域生长功能的实现。种子点选择过后,程序会自动关闭该对话框回到主界面显示区域生长后的图片。图像区域生长后效果图如图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图图图像区域生长后效果图区域生长是经过在图像上选取个点作为第个种子点,并设定个阈值。然后将种子点的像素与周围点的灰度值相比较,他们的差值小于设定的阈值时就将其作为另个种子点这样循环比较下去,直到种子点周围点灰度差值大于阈值才停止......”。
5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....从而得到如图的区域生长后的图形。由图对比可见,当阈值为时得到的区域生长后的图形最接近完整的肝脏,所以在后面提取区域时运用阈值为的区域生长图进行提取,以便得到更好的肝脏提取效果图。但此区域生长方法有个缺陷,会使得到的图形产生很多小孔,这将由下个提取区域功能中加入个图像腐蚀功能来改善这缺陷。在编写区域生长的程序时需注意阈值的选择,如果阈值太大,容易导致溢出,使程序不能正常运行如果阈值太小,则无法得到所需的图像。提取区域提取区域的功能是在图像进行过区域生长以后,将区域生长后的二值图作为掩码,在原图中提取并显示出来,从而提取出了原图腹腔中的肝脏部分。提取区域后的图像如图所示图提取区域后的图像上图是未经过腐蚀直接进行提取区域后得到的图像,由于直接进行提取区域,,,附录系统实现主程序读入图像生成对象,即打开选择图片对话框,选择图片后返回程序获得图片地址自带字符操作类转化为字符串读入图片图片备份读入图片标志显示图片判断是否有图片,生成类型对话框对象生成尺寸对话框对象,获取平滑类型,获取尺寸并判断平滑显示平滑后图像图像显示函数获取句柄获取图像框大小尺寸......”。
6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....矩形区域法对多目标抽样层的划分本次案例是以省年月份城镇居民家庭消费支出调查的统计数据作为总体数据,所以数据具有可靠性真实性。本次调查的目标为个指标食品衣着居住家庭设备用品及服务医疗保健交通和通信教育文化娱乐服务其他商品和服务。具体的调查对象包括户口在本地区的常住非农业户户口在本地区的常住农业户户口在外地,居住在本地区半年以上的非农业户户口在外地。居住在本地区半年以上的农业户。数据收集方式是采用日记账方式来收集,每季上报次。对于个调查户的消费支出的资料,我们现在运用矩形区域划分法对其进行抽样实验,在实验中这个调查户的消费支出的资料作为总体,总体的大小为,所用的软件是软件。首先,为了研究的方便,分层易于操作,我们把这个变量合并成个新的变量食品和衣着合并成个变量,从而形成个新的变量医疗保健和教育文化娱乐服务合并成新变量家庭设备用品及服务和交通和通信合并成新变量其他商品和服务和居住合并成新变量。其次,对个变量的相关关系进行分析。四个变量的相关系数矩阵见下表从上面的相关系数矩阵来看,四个变量的相关系数都很小,可以认为它们是相互独立的。因为现实中的数据模拟,不是严格的独立......”。
7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....接着,进行分层。把这个指标分别按照他们与中位数的大小关系分成个水平,其中指标的中位数是,指标的中位数是,指标的中位数是,指标的中位数是。这样我们就把整个空间分成个子总体,即就是把总体分成了个层。子总体的大小分别为,,,,,,野,锻炼了个人的自我学习和理解等综合能力,发现了自己在学习上的优点和不足,这对我个人以后的成长发展也起着重要的影响作用,我也会朝着更优秀的方向努力发展。十分感谢在我研究课题过程中不断帮助我给我建议和意见的同学们,更加感谢我的指导老师给我提供了很多专业资料并且不断的帮助我更好地理解我的课题内容,也指出了我论文中很样精度也起着很好的作用,只是这方面还没有完全成熟的理论方法。在了解了选题背景国内外研究状况理论意义与实践意义和文章的主要内容的基础上解释了些基本的概念概念,简述了种全新的划分层的方法,矩形区域划分法,并构造了抽样统计量,而且证明了这种划分层的方法得到的抽样误差严格小于简单随机抽样的抽样误差。本文对多目标分层抽样进行了简单的介绍,同时也有着很多的不足,有待于我以后去学习和加强......”。
8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....也会受到更多人的关注和研究,关于多目标分层抽样的种种理论和技术也会越来越完善。通过对这个课题的研究和探索也拓展了我的知识面和思维目标抽样设计更加复杂。二多目标分层抽样的应用研究多目标分层抽样关于层的划分多目标分层抽样是根据总体单元的特性,先把总体分为若干个层,使总体中差异较小的单位归于层,差异较大的单位归于不同的层,这样做的目的是为了实现层间方差尽可能大,层内方差尽可能小。然后在每层中抽取样本来代表该层自然就会有较大的代表性,由于每层都进行了抽样,总样本就会对整个总体也有较大的代表性,这样就能片。最简单的方法就是用该点的梯度幅度代替该点的灰度。此方法的缺点就是增强的图像仅仅是灰度变换比较陡峭的边缘轮廓,而灰度变化比较平缓或者比较均匀的地方则呈现黑色。为了突出物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与阈值作比较,如果大于阈值,该像素点的灰度值用其梯度值表示,否则用个固定的灰度值表示。综上所述,图像锐化算法主要包括三方面内容算取合适的梯度算子如拉普拉斯算子根据所选用的梯度算子计算图像各点的灰度值,得出各像素点的梯度值根据个像素点的梯度值选取合适的处理方法......”。
9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....本次设计主要只研究运用梯度算子来实现图像的锐化处理。首先绘制出梯度锐化实现的流程图,流程图如图子程序开始复制图像利用算子求出,方向上梯度求出图像梯度模值利用梯度模值与原图灰度值按比例相加得到锐化图像返回图梯度锐化流程图根据上述流程图,编程实现图像锐化功能。图像锐化前后效果图对比如图平均平滑第次梯度锐化第二次梯度锐化第三次梯度锐化图图像锐化前后对比图由上图可清晰的看到图像经过锐化处理后的变化。图像锐化使原本经过图像平滑后变得模糊的边界轮廓得到了改善,是图像的边缘变得清晰了。但是图像如果经过过度锐化图后两图以后,反而会使图像变得模糊。因此进行图像锐化时需进行适度锐化图像,从而更好的得到所需图像。区域生长图像分割概述图像分割的方法和种类非常多,有些分割算法可以直接用于大多数图像,而另些则只适用于特殊类别的图像。般采用的方法有边缘检测边界跟踪区域生长区域分离和聚合等。本次设计则只研究区域生长的图像分割方法。图像分割算法般给予图像灰度只的不连续性或其相似性。不连续性是给予图像灰度的不连续变化分割图像......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。