1、“.....你认为级数和积分特别是和无穷区间广义积分之间有无内在的本质联系如果你认为有联系,它们之间的联系是什么样的关于函数项级数的简单实验与讨论首先我们研究下的图象......”。
2、“.....你是否能够得到在的情况下此例有更简单的表达式并是否得到其内在的联系如果有,对于你的想法给出充分的证明,关于级数的实验与讨论般了解我们知道以为周期的函数,如果满足条件,那么就可以展成级数,并且在区间......”。
3、“.....是第项的频率,以及,征问题与实验个点对应,与下个点,之间靠近吗如果不靠近,那么与,之间呢满足什么条件其是靠近的问题与实验若取等又是什么情况我们从中能得到什么新发现取呢,,是相应形式级数的系数,问题与实验选择适当的函数将其展成相应的级数......”。
4、“.....无论对其他问题理论的充实还是对些问题的实际求解,都发挥着举足轻重的作用。因而我们在掌握其理论的同时,如果能进步了解其内在的实质,就能将其作用发挥得淋漓尽致。最后,借助于直观的图象......”。
5、“.....而且对进步掌握其内在本质起到定的作用。展式的般形式为,特殊地,若,称其为麦克劳林展式,几种典型你所记得的有哪几种的麦克劳林展式在实际应用中很有作用,首先以的麦克劳林展式为例,研究其随着展开项的增加其逼近程度二项逼近,三项逼近,四项逼近问题与实验选择其他典型的函数如等,通过实验......”。
6、“.....问题与实验如何从几何的角度理解展开和展式基于这样的考虑你是否还能找到其他典型的函数展开,使其在些方面具有良好的性质什么性质附加问题简单的小问题引起的大思考最后,我们从在附近的图象再研究其些性质问题与实验这些曲线有何数做为描述变量间关系的种数学模型,在理论分析和科学计算方面起着重要的作用......”。
7、“.....可以得到直观的认识。为了能有效地使用级数这工具于科学研究和工程实践,正确地理解和把握级数的基本性质是首要的前提。例考察级数,级数的前项和,其收敛性条件为收敛发散,并且在的情况下,越大的收敛速度越快,越小的收敛速度越慢,这事实即可以通过简单地理论证明......”。
8、“.....,,,,数列的敛散性有何见解下面的图可提供个直观的启示图图直观地提示我们数列是单调增的随着的增加,的增长速度趋近于零,事实上,利用程序文件,,可以进步地验证,,,,的增长速度曲线如图所示。图上述数据和通过实验得到的曲线揭示了数列收敛的可能性,事实上......”。
9、“.....其极限值就是著名的常数,目前人们还不知道常数是有理数还是无理数。问题与实验能否给出数列收敛的几何解释当然这需要首先体会到特别是的几何意义。问题与实验根据你对数列收敛的几何解释如果你确实得到了它的几何解释,你能对数列例下面让我们来研究发散的级数和常数。图以为例,使用程序文件,,,,......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。