1、“.....把行列式的行列的元素乘以同数后加到另行列的对应元素上,行列式不变如果行列式中有行列的元素全部是零,那么这个行列式等于零利用行列式的这些性质,我们可以构造行列式来证明等式和不等式例已知,求证证明令,则命题得证例已知,求证证明令......”。
2、“.....求证证明令,则而,则,命题得证例行列式在解析几何中的几个应用用行列式表示公式用行列式表示三角形面积以平面内三点,为顶点的的面积是的绝对值证明将平面,三点扩充到三维空间,其坐标分别为,其中为任意常数由此可得,则面积为......”。
3、“.....和,的直线的方程为证明由两点式,我们得直线的方程为将上式展开并化简,得此式可进步变形为此式为行列式按第三行展开所得结果原式得证应用举例例若直线过平面上两个不同的已知点,,求直线方程解设直线的方程为,不全为,因为点,在直线上,则必须满足上述方程,从而有这是个以为未知量的齐次线性方程组,且不全为......”。
4、“.....即则所求直线的方程为同理,若空间上有三个不同的已知点,平面过,则平面的方程为同理,若平面有三个不同的已知点,,圆过,则圆的方程为行列式在平面几何中的些应用三线共点平面内三条互不平行的直线相交于点的充要条件是三点共线平面内三点,在直线的充要条件是应用举例例平面上给出三条不重合的直线,若......”。
5、“.....将第列乘上,第列乘上,全加到第列上去,可得因为在与上,所以,且若与平行,若也在上交于点,无论何种情形,都有不组成三角形这说明由,得到三条直线或两两平行或三线交于点也就是三条直线不能组成三角形行列式在三维空间中的应用平面组设由个平面方程构成的方程组为若方程组中的各代以......”。
6、“.....叫做点的齐次坐标这平面组的相关位置与方程组的系数所组成的两矩阵及的秩及有关系现在分别叙述如下Ⅰ当,则方程组中各系数全是Ⅱ当则方程组不合理,方程组有解当,将趋近于无穷大假设趋近于在这种情况下,我们说这个平面在无穷远重合Ⅲ当......”。
7、“.....及,满足以下关系式上式表示平面,平行但不相合也就是平面组中个平面相合或平行,至少有两个平面不相合Ⅴ则矩阵及中所有三阶行列式全是,至少有个二阶行列式不是假设我们必可求得适合下式,式中......”。
8、“.....适合以下关系,是,中的数以上第个等式表示组中第平面,与直线平行又因第二个不等式表示第平面不经过上述直线,所以个平面有平行的交线例如由方程组,解得因为行列式而其它三个行列式不全是零故......”。
9、“.....,并假定在这种情况下,平面,相交于点又因故平面经过前面三个平面的交点,就是个平面有个交点,不在无穷远Ⅷ当,,则矩阵中至少有个四阶行列式不等于零假设是,中的数以上不等式表示平面,不经过前三个平面的交点点组设有个点......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。