帮帮文库

返回

函数项级数的收敛判别法探究 函数项级数的收敛判别法探究

格式:word 上传:2022-06-25 18:44:37

《函数项级数的收敛判别法探究》修改意见稿

1、“.....就有,特别有因而由得,命,就得,但知道,,这和矛盾,从而证明了级数在,上致收敛于注如果把定理中的有界闭区间,换成开区间或者无穷区间,结论就可能不成立例如级数的每项在区间,中非负且连续,它的和函数也在,中连续,但该级数在,中并不致收敛致条件判别法下面讨论满足致条件,来探讨的致收敛性,得到函数项级数的致条件判别法定理设函数列在闭区间,上连续,且存在点,收敛,使得在点收敛且在闭区间,上满足致条件则函数项级数在,上致收敛证已知在点,收敛......”

2、“.....存在,使得时,对任意,有又因为在闭区间,上满足致条件,即存在常数,使得对于任意两点,都有存在,当时,对切,任意,任意有,于是任意,任意,任意即在,上致收敛导数判别法下面探讨在函数列可微条件下,当在,上致收敛时,函数项级数的致收敛性定理设函数列在闭区间,上连续,可微,且存在点,收敛......”

3、“.....上致收敛则函数项级数在,上致收敛证已知在点,收敛,在,上致收敛,即任意,存在,使得时,对任意,有对任意有根据拉格朗日中值定理,任意,任意,任意有介于与之间于是任意,任意,任意即在,上致收敛点列判别法下面......”

4、“.....则于是对任意点列,都有充分性用反证法假设在点集上不致收敛于,则,,,及,使得于是,取,与,使取,与,使取,与,使这样就得到点列,使,与已知条件相矛盾总结本文介绍了多种判断函数项级数致收敛的方法,并对这些方法进行了理论上的证明,为我们处理函数项级数相关的问题提供了丰富的解决方法参考文献华东师范大学数学系......”

5、“.....年月第三版刘玉琏,傅沛仁,林玎数学分析讲义高等教育出版社,年月第二版邓东皋,尹小玲数学分析简明教程下高等教育出版社,年月第二版判别法等对于函数项级数的致收敛性,有没有类似于数项级数收敛性判别的其它方法,是个值得研究的课题函数项级数在致收敛的条件下,可以讨论其和函数的连续性可微性以及可积性函数项级数在致收敛时,求和和求导求和和求积分的顺序可以交换顺序并且,往往交换顺序以后方便我们解决些函数项级数中的基本问题这个应用非常重要,因此......”

6、“.....表达式,称为定义在上的函数项级数,简记为或。称为函数项级数的部分和函数列。函数项级数致收敛的定义若函数项级数的部分和函数列在数集上致收敛于,则称函数项级数在上致收敛于或称在上致收敛我们可以看到,函数项级数的致收敛性归结到其部分和函数列的致收敛性的研究上。例考察级数的致收敛性分析由于函数项级数的致收敛性要归结到它的和函数列的致收敛性上。所以我们首先要求出它的和函数列,由等比级数求和公式知当时,......”

7、“.....由于因此级数的致收敛性等价于函数列对区间的致收敛于零。证明由等比级数求和公式知当时,对任意,下面证明此函数列是致收敛于零的。由于,所以在有界且对于任意给定的,存在,当,时,有。于是对所有自然数,有,而当时,由知,当时于是在地致收敛于零,因此存在,当时,对所有,有这样当时......”

8、“.....因此级数在上致收敛。定义设都是在数集上由定义的函数,若存在个在上由定义的函数,对任意的,存在自然数,使得当时,对切均有则称函数项级数在数集上致收敛于函数项级数致收敛的判定方法下面将给出些判别函数项级数致收敛的基本方法柯西致收敛准则,维尔斯特拉斯判别法判别法,狄利克雷判别法,阿贝尔判别法以及不常用的方法,例如两边夹判别法比较判别法单调判别法致条件判别法导数判别法点列判别法而等比级数当公比,∈成立......”

9、“.....∈成立,而几何级数收敛,由优级数判别法知,函数项级数在上致收敛注当定理条件成立时,级数在上收敛且绝对收敛极限形式设为定义在数集上的函数列,若,对∈成立,则函数项级数在上致收敛。定理对数判别法设为定义在数集上正的函数列,若存在,则若对则函数项级数在上致收敛若对有时收敛,由优级数判别法知函数项级数在上致收敛而当对成立时,有,级数当时,对切自然数和切,有,由,......”

下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
函数项级数的收敛判别法探究.doc预览图(1)
1 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(2)
2 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(3)
3 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(4)
4 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(5)
5 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(6)
6 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(7)
7 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(8)
8 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(9)
9 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(10)
10 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(11)
11 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(12)
12 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(13)
13 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(14)
14 页 / 共 21
函数项级数的收敛判别法探究.doc预览图(15)
15 页 / 共 21
预览结束,还剩 6 页未读
阅读全文需用电脑访问
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为word文档,建议你点击DOC查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档