1、“.....所取数据为淬火次的试样。淬火温度对奥氏体尺寸的影响淬火温度晶粒度等级图加热温度与奥氏体晶粒大小的关系从图中可以看出,在同淬火次数下,随着加热温度的升高,晶粒度等级越来越高,即奥氏体晶粒直径越来越小。在同淬火次数和保温时间下,随着加热温度的升高,奥氏体晶粒也随着变的细小。图中的曲线规则不是很准确,这可能与实验过程中的操作影响有关。钢的含量不高,也就意味着碳原子通过的界面扩散的路径少,奥氏体的形成和均匀化都较慢。故提高加热温度,不但提高了奥氏体的形核率也增加了奥氏体的长大速度。继续提高奥氏体化温度形核率的净增加贡献形核率的增加对奥氏体细化的贡献减去长大速度对晶粒粗化的贡献的值逐渐减小,从而奥氏体晶粒逐渐变小。淬火加热保温时间对奥氏体晶粒尺寸的影响图表示了不同保温时间,相同淬火温度和淬火次数下奥氏的体晶粒尺寸。水淬次后的晶粒大小水淬次后的晶粒大小饱和苦味酸加立白洗洁剂饱和苦味酸加立白洗洁剂图钢不同保温时间下的组织下图是个淬火加热温度和下,奥氏体晶粒大小的变化趋势。所取数据为淬火次的试样......”。
2、“.....在相同的淬火温度和淬火次数下,随着保温时间的增加,奥氏体晶粒直径越来越小。这是因为在定温度范围内,保温时间越长,使得在加热奥氏体化时,在减小奥氏体的形核率的同时还推迟了奥氏体均匀化和碳化物的熔解的时间。因此随着保温时间的延长奥氏体不断形核,而奥氏体长晶粒大的速度却较慢,所以奥氏体晶粒尺寸逐渐减小。循环淬火次数对奥氏体晶粒尺寸的影响图表示了相同保温时间和相同淬火温度下不同淬火次数下奥氏体的晶粒尺寸。水淬次后的晶粒大小水淬次后的晶粒大小水淬次后的晶粒大小饱和苦味酸加立白洗洁剂饱和苦味酸加立白洗洁剂图钢不同淬火次数下的组织下图为同加热温度和保温时间下淬火次数与晶粒度的关系图。循环淬火次数对奥氏体晶粒尺寸的影响淬火循环次数奥氏体晶粒度图淬火循环次数与奥氏体晶粒大小的关系从图中可以明显的看出,随着淬火次数的增加,奥氏体平均晶粒直径越来越小。这是因为每次加热淬火都要经历奥氏体化,在快速加热,短时保温的工艺下,每次奥氏体化晶粒就被细化次。奥氏体晶粒大小和室温下组织大小的关系通常,奥氏体晶粒越细小,其室温下的组织也越细小。此外,奥氏体晶粒大小还会影响钢在冷却时的转变特点。以珠光体转变为例......”。
3、“.....珠光体转变进行得越快。这是因为珠光体的形核位置是在奥氏体的晶界或晶界处的先共析相。珠光体的长大是受原子通过及的扩散速度控制的。奥氏体晶粒越细,晶界越多,就为珠光体的形核和长大提供了有利条件。长大速度越大,珠光体的片层间距越小,其机械性能也越高。同样,奥氏体晶粒大小也影响马氏体束块或板条的尺寸大小。马氏体转变的切变性和变温形成极速长达的特性,使得原奥氏体晶界细化马氏体束块或板条的效果最明显。第章结论本次论文利用普通空气电阻炉加热,采用快速循环加热淬火细化晶粒的工艺,对钢进行晶粒细化,实验结果第三列中的因素,它的第水平安排在第号试验中,对应的晶粒平均直径分别为,,,其和为,记在这行的第三列中。类似的,这行的三个数分别是因素的第水平所在的试验中对应的测试的平均直径之和。这行由于因素只有两个水平,所以这行只有两个数,分别的因素的第水平所在的试验中对应的测试的直径之和。这行的数,分别是这行中三个数除以相应的个数所得的结果,也就是各水平对应的平均值。这里值得我们注意的是,因素的第三水平实际上就是第二水平,我们把正交表中地第三列的因素是水平安排又重写次,两边用虚线标出,对应的列在右边......”。
4、“.....由于这列中没有第三水平,因此在求和时并没有,只出现和。因素的第二水平共出现了次,在求平均值时是除以,即第水平共出现了次,所以。同列中的的最大值减去最小值所得的差就是极差。般各列的极差是不同的,这说明各因素的水平改变时对实验指标的影响是有差别的。极差越大说明这个因素的水平改变时对实验指标的影响越大。检查最大的那列,就是那个因素的水平改变时对实验指标的影响最大,称为主要因素。表中算出个列的极差分别为,,显然第列中的极差最大,说明因素的水平改变时对试验指标的影响最大,因此因素是主要因素它的三个水平所对应的循环淬火后晶粒直径的平均值分别为,,,以第水平所对应的数值最小,所以取它的第水平最好。第列中因素的极差为,它的三个水平所对应的循环淬火后晶粒直径的平均值分别为,,,以第水平所对应的数值最小,所以取它的第水平最好。第列中因素的极差为,它的两个水平所对应的循环淬火后晶粒直径的平均值分别为,,以第水平所对应的数值最小,所以取它的第水平最好。即此实验的最优方案是,对应的快速循环淬火工艺为淬火加热温度,保温时间,循环次数次。这与通过观察组织得出的结果相同......”。
5、“.....金相显微组织分析从上面各显微组织中选择钢原始组织与最佳超细化工艺的显微组织比较如下原始组织正火的晶粒大小水淬次后的晶粒大小饱和苦味酸加立白洗洁剂饱和苦味酸加立白洗洁剂图钢原始组织与最佳细化组织比较从上面图比较可知,钢经水淬次后的晶粒得到了很大的细化。循环热处理工艺之所以能够细化晶粒,这是因为晶粒度是指室温下稳定组织的晶粒,即我们所看到的晶界都是原奥氏体晶粒的晶界,晶粒中的组织是。当加热时,奥氏体会在组织中形核并长大,即原来比较大的奥氏体晶粒中同时有许多地方形核长大成些较小的奥氏体,淬火时奥氏体转变成,原来个比较大的晶粒被分解成些较小的晶粒。再次重复此过程,第次得到的较小的晶粒会被重新细化,多次重复即可得到超细化晶粒。通过细化奥氏体晶粒可以细化马氏体束尺寸,从而提高钢的强度和韧性,还可以改善钢的耐延迟断裂性能和抗疲劳性能。淬火工艺参数对钢组织和性能的影响淬火加热温度对奥氏体晶粒尺寸的影响图表示了不同加热温度,相同保温时间和淬火次数下奥氏的体晶粒尺寸......”。
6、“.....不平衡音频信号,立体声复合信号经过音频信号处理后,均变成不平衡音频信号,并调整电平使之最大频偏为。该调制器的输出电平为,阻抗。前级功率放大器前置功放单元是由三个功率放大晶体管组成的三级宽带放大器构成,具体电路见图所示。这三级总增益约,输出功率。图高频放大器前置功放原理图第级由输入匹配网路和及其直流偏置电路组成。输入匹配网路由组成∏型低通滤波型阻抗变换器,它不但使输入端阻抗与第级晶体管的基极阻抗低阻抗,小于相匹配而且有抑制高次谐波的作用,调整可以达到宽带匹配,同时和对输入信号起分压作用。工作在甲类状态,和为退耦元件,目的是通直流和去除高频交流,以减少交流通过电源引起相互串扰。第二级由功放管及前后级间匹配网路直流偏置电路组成,工作在甲乙类。组成级间匹配网路,使第级输出阻抗变换到第二级输入阻抗,从而达到匹配,同时和也其分压作用。组成吸收回路,滤出以下的残波。串在基极回路内以防止寄生震荡。第三级由功放管及级间匹配网络及直流偏置电路组成。工作在乙类状态。级间耦合匹配网络由组成,这是节型低通滤波器阻抗变换器,调频信号经放大后......”。
7、“.....用做电流测量,正常工作时电流在之间。输出匹配网络由组成,这是节型低通滤波器的阻抗变换器。也用来调节宽带匹配。前置盒三级功放中的基极直流偏置电路形式样,均为并联馈电方式。为使晶体管工作在甲类或乙类状态,采用分压式供电与发射极共用个电源。同时考虑减少基极直流外电路对晶体管基极输入阻抗的影响。在分压供电外电路中串入高频阻流圈,对直流供电提供通路,而对高频电流供电电路相当于开路,减少高频电流对电源的窜扰。应该指出如果三级均调谐在个频点上例如中心频率ƒ上是很难满足总带宽要求,必须利用扫描仪进行参差调谐,才能满足总带宽要求。末级功率放大器末级功放根据输出功率不同,其输出电路不样,根据广电总局的标准分为等等,目前用全固态器件采用功率合成技术可以做到高达。单管输出功率可达到。例如就可以获得的输出功率。现以功放为例,说明末级功放的工作原理。其输入阻抗为,电平为,阻抗为。所提供直流电压为。功率放大器原理图如图所示。下面从设计角度经行详细介绍。图末级功率放大器原理图工作状态的选取为了提高效率,末级功放般采用丙类放大,且选取半导通脚为。根据放大器的动态特性,随着信号的加大......”。
8、“.....集电极电流将由标准的余弦尖顶脉冲到凹顶脉冲。考虑到凹顶脉冲产生的失真会增大,残波辐射会增加,选取临界状态是比较合适的。这时输出功率较大,集电极效率也高,残波辐射有小。在晶体管功率放大器中,可以从改变激励电压基极偏压就可以改变放大器的工作状态的。通过激励电压就可以改变放大器的工作状态的。末级功放参数的计算考虑输出匹配网络和输出滤波器的插入损耗,则末级晶体管的实际输出功率要求达到。作为工程近似计算,可以认为集电极最小瞬时电压为饱和导通压降于是。其电压利用系数为由公式得所以取导通角,,,,粒大小的关系图。所取数据为淬火次的试样。淬火温度对奥氏体尺寸的影响淬火温度晶粒度等级图加热温度与奥氏体晶粒大小的关系从图中可以看出,在同淬火次数下,随着加热温度的升高,晶粒度等级越来越高,即奥氏体晶粒直径越来越小。在同淬火次数和保温时间下,随着加热温度的升高,奥氏体晶粒也随着变的细小。图中的曲线规则不是很准确,这可能与实验过程中的操作影响有关。钢的含量不高,也就意味着碳原子通过的界面扩散的路径少,奥氏体的形成和均匀化都较慢。故提高加热温度,不但提高了奥氏体的形核率也增加了奥氏体的长大速度......”。
9、“.....从而奥氏体晶粒逐渐变小。淬火加热保温时间对奥氏体晶粒尺寸的影响图表示了不同保温时间,相同淬火温度和淬火次数下奥氏的体晶粒尺寸。水淬次后的晶粒大小水淬次后的晶粒大小饱和苦味酸加立白洗洁剂饱和苦味酸加立白洗洁剂图钢不同保温时间下的组织下图是个淬火加热温度和下,奥氏体晶粒大小的变化趋势。所取数据为淬火次的试样。保温时间对奥氏体晶粒的影响保温时间奥氏体晶粒等级图保温时间与奥氏体晶粒大小的关系从图中可以看出,在相同的淬火温度和淬火次数下,随着保温时间的增加,奥氏体晶粒直径越来越小。这是因为在定温度范围内,保温时间越长,使得在加热奥氏体化时,在减小奥氏体的形核率的同时还推迟了奥氏体均匀化和碳化物的熔解的时间。因此随着保温时间的延长奥氏体不断形核,而奥氏体长晶粒大的速度却较慢,所以奥氏体晶粒尺寸逐渐减小。循环淬火次数对奥氏体晶粒尺寸的影响图表示了相同保温时间和相同淬火温度下不同淬火次数下奥氏体的晶粒尺寸......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。