1、“.....两者相等,整理即可得证第页共页解答证明如图,连结,过点作边上的高五边形又五边形故答案为,过点作边上的高,点评此题考查了勾股定理的证明,用两种方法表示出五边形的面积是解本题的关键八班五位同学参加学校举办的数学素养竞赛试卷中共有道题,规定每题答对得分,答错扣分,未答得分赛后五位同学对照评分标准回忆并记录了自己的答题情况同学只记得有道题未答,具体如下表参赛同学答对题数答错题数未答题数根据以上信息,求,四位同学成绩的平均分最后获知五位同学成绩分别是分,分,分,分......”。
2、“.....与中算得的平均分不相符,发现是其中位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况直接写出答案即可考点二元次方程组的应用加权平均数专题计算题压轴题图表型分析直接算出,四位同学成绩的总成绩,再进步求得平均数即可设同学答对题,答错题,根据对错共和总共得分列出方程组成方程组即可根据表格分别算出每个人的总成绩,与实际成绩对比为分正确,为,分正确,为为,正确,正确所以的是,多算分,也就是答对的少题,打错的多题,由此得出答案即可解答解分,答......”。
3、“.....答错题,由题意得,解得,答同学答对题,答错题同学,他实际答对题,答错题,未答题点评此题考查加权平均数的求法,二元次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答如图,在平面直角坐标系中,点,的坐标分别为,动点从点出发,沿轴正方向以每秒个单位的速度运动,同时动点从点出发,沿射线方向以每秒个单位的速度运动,以,为邻边构造▱,在线段延长线上取点,使,设点运动的时间为秒当点运动到线段的中点时,求的值及点的坐标当点在线段上时......”。
4、“.....使,过点作⊥,截取且点,分别在,四象限,在运动过程中,设▱的面积为当点,中有点落在四边形的边上时,求出所有满足条件的的值若点,中恰好只有个点落在四边形的内部不包括边界时,直接写出的取值范围考点四边形综合题专题几何综合题压轴题分析由是的中点求出时间,再求出点的坐标,连接交于点,由▱的对角线相等,求四边形是平行四边形当点在上时,第种情况,当点在边上时,由∽求解,第二种情况,当点在边上时,由∽求解当点在的延长线上时,第种情况,当点在边上时,由∽求解,第二种情况,当点在边上时,由∽求解当时和当时......”。
5、“.....解答解,是的中点即,如图,连接交于点,第页共页在▱中,四边形是平行四边形Ⅰ当点在上时,第种情况如图,当点在边上时,∥,∽即第二种情况当点在边时,∥,第页共页∽即Ⅱ当点在的延长线上时,第种情况当点在边上时,∥,∽,即第二种情况当点在边上时,∥,∽,即,或第页共页当时在范围内当时点评本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解的顶点在第象限,∥轴,∥轴,且对角线的交点与原点重合在边从小于到大于的变化过程中,若矩形的周长始终保持不变......”。
6、“.....由于矩形的周长始终保持不变,则为定值根据矩形对角线的交点与原点重合及反比例函数比例系数的几何意义可知•,再根据定时,当时,最大可知在边从小于到大于的变化过程中,的值先增大后减小解答解设矩形中矩形的周长始终保持不变,为定值,第页共页为定值矩形对角线的交点与原点重合•,又为定值时,当时,最大,在边从小于到大于的变化过程中,的值先增大后减小故选点评本题考查了矩形的性质......”。
7、“.....有定难度根据题意得出•是解题的关键二填空题共小题,每小题分,满分分因式分解考点因式分解提公因式法分析直接提取公因式,进而得出答案解答解故答案为点评此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键如图,直线,被所截,若∥,则度考点平行线的性质专题计算题分析根据平行线的性质求出,根据三角形外角性质求出即可解答解∥,第页共页故答案为点评本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出的度数和得出不等式的解是考点解元次不等式分析先移项,再合并同类项......”。
8、“.....故答案为点评本题考查的是解元次不等式,熟知解元次不等式的基本步骤是解答此题的关键如图,在中则的值是考点锐角三角函数的定义分析根据锐角三角函数的定义求出即可解答解,故答案为点评本题考查了锐角三角函数定义的应用,注意在中请举反例说明命题对于任意实数,的值总是正数是假命题,你举的反例是写出个的值即可考点命题与定理第页共页专题开放型分析先进行配方得到,当时个黄球,个黑球,个红球,直接利用概率公式求解即可求得答案首先设从袋中取出个黑球,根据题意得......”。
9、“.....其中个黄球,个黑球,个红球,从袋中摸出个球是黄球的概率为设从袋中取出个黑球,根据题意得,解得,经检验,是原分式方程的解,所以从袋中取出黑球的个数为个点评此题考查了概率公式的应用注意用到的知识点为概率所求情况数与总情况数之比第页共页如图,在等边三角形中,点,分别在边,上,且∥,过点作⊥,交的延长线于点求的度数若,求的长考点等边三角形的判定与性质含度角的直角三角形专题几何图形问题分析根据平行线的性质可得,根据三角形内角和定理即可求解易证是等边三角形......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。