1、“.....但必须做到科学适度,具体地说,有以下几个原则要有难度,但须在学生的最近发现区内,使学生可以跳跳,摘桃子。要考虑到大多数学生的认知水平,应面向全看,平行边形定义和前条判定定理的条件较单,或相等或平行,而第条判定定理是相等与平行者兼有,如果将它看作是定义和判定中各取条件的部分而得出的话,那么从定义和前条判定定理中每两个取其中部分条得到了进步发展。参考文献张允军初中教学实效性的几点思考教学与管理,谭达文初中数学教学模式的构建柳州师专学报,闫志文试论初中数学教学中的情境教学新课程学习,作者单位山西省柳林县穆村镇初中数学素质教育中的情境教学原稿,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。情境教学往往会具有鲜明的形象性......”。
2、“.....可见可闻,产生真切感。只有感受真切,才能入境。要做到这点,可以用创设问题情境来力的目的,要求学生用所学的种判定方法去验证这条猜想结论的正确性。经过全体师生齐分析验证,最终得出结论条猜想中有条猜想是的,另外个正确猜想中的个尚待给予证明。学生在教师的层层设问下,参因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问幽默,还是欣喜竞争,都应考虑活动的启发性。孔子曰不愤不启,不悱不定理两组对边分别相等的边形是平行边形。对角线相互平分的边形是平行边形。两组对角分别相等的边形是平行边形。初中数学素质教育中的情境教学原稿。组对角相等且连该两顶点的对角线平分另对角线的义和前条判定定理的条件较单......”。
3、“.....如果将它看作是定义和判定中各取条件的部分而得出的话,那么从定义和前条判定定理中每两个取其中部分条件是否都能构成形是平行边形。组对角相等且连该两顶点的对角线被另对角线平分的边形是平行边形。在启发学生得出上面的若干猜想之后,笔者又进步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维创设教学情境的原则创设教学情境的方法很多,但必须做到科学适度,具体地说,有以下几个原则要有难度,但须在学生的最近发现区内,使学生可以跳跳,摘桃子。要考虑到大多数学生的认知水平,应面向全体的活动有机地注入到学科知识的学习之中。它讲究强调学生的积极性,强调兴趣的培养,以形成主动发展的动因,提倡让学生通过观察,不断积累丰富的表象......”。
4、“.....为学好数学发展究问题的动机,通过探索,消除剧烈矛盾,获得积极的心理满足。创设问题情境应注意要小而具体新颖有趣有启发性,同时又有适当的难度。此外,还要注意问题情境的创设必须与课本内容保持相对致,更不能运了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察猜想分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知形是平行边形。组对角相等且连该两顶点的对角线被另对角线平分的边形是平行边形。在启发学生得出上面的若干猜想之后,笔者又进步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的......”。
5、“.....可见可闻,产生真切感。只有感受真切,才能入境。要做到这点,可以用创设问题情境来数学教学实践中的探索,谈谈情境教学的些体会。初中数学素质教育中的情境教学原稿。曾有人说数学是思维的体操。数学教学是思维活动的教学。学生的思维活动有赖于教师的循循善诱和精心的点拨和启发初中数学素质教育中的情境教学原稿力打下基础。简而言之,情境教学以促进学生整体能力的和谐发展为主要目标。本文结合笔者十多年的教学经验和近几年在数学教学实践中的探索,谈谈情境教学的些体会。初中数学素质教育中的情境教学原稿,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这点......”。
6、“.....让学生在迫切要求下学习。使学生产生明显的意识倾向和情感共鸣,乃是主体参与的条件和关键。情境教学具有定的代表性,它以优化的情境为空间,根据教材的特点营造渲染种富有情境的氛围,让学定的代表性,它以优化的情境为空间,根据教材的特点营造渲染种富有情境的氛围,让学生的活动有机地注入到学科知识的学习之中。它讲究强调学生的积极性,强调兴趣的培养,以形成主动发展的动因,提倡让不恰当的比喻,不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学形是平行边形。组对角相等且连该两顶点的对角线被另对角线平分的边形是平行边形。在启发学生得出上面的若干猜想之后......”。
7、“.....以使学生形成严谨的思维习惯,达到提高学生逻辑思维发学生求知欲。创设问题情境就是在讲授内容和学生求知心理间制造种不和谐,将学生引入种与问题有关的情境中。心理学研究表明认知矛盾时动机的根源。课堂上,教师创设认知不协调的问题情境,以激起学生因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问幽默,还是欣喜竞争,都应考虑活动的启发性。孔子曰不愤不启,不悱不体学生,切忌专为少数人设置。要简洁明确,有针对性目的性,表达简明扼要和清晰,不要含糊不清,使学生盲目应付,思维混乱。组对边平行且相等的边形是平行边形。分析从这条判定方法结构来看,平行边形生通过观察,不断积累丰富的表象......”。
8、“.....为学好数学发展智力打下基础。简而言之,情境教学以促进学生整体能力的和谐发展为主要目标。本文结合笔者十多年的教学经验和近几年初中数学素质教育中的情境教学原稿,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这点,可以用创设问题情境来学生,切忌专为少数人设置。要简洁明确,有针对性目的性,表达简明扼要和清晰,不要含糊不清,使学生盲目应付,思维混乱。使学生产生明显的意识倾向和情感共鸣,乃是主体参与的条件和关键。情境教学具因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问幽默......”。
9、“.....都应考虑活动的启发性。孔子曰不愤不启,不悱不是否都能构成平行边形的判定方法呢这样笔者创设了情境,根据对第条判定定理的剖析,使学生用类比的方法提出了猜想组对边平行且另组对边相等的边形是平行边形。组对边平行且组对角相等的边形是平行边心校邮政编码。平行边形判定定理两组对边分别相等的边形是平行边形。对角线相互平分的边形是平行边形。两组对角分别相等的边形是平行边形。组对边平行且相等的边形是平行边形。分析从这条判定方法结构了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察猜想分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知形是平行边形......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。