1、“.....。其中,。,表示第个任务在第台机器上的时间。以长为标准,最好的调度,或计算机算法设计与分析方案是。,第台机器所需时间第台机器所需时间第台机器所需时间例有个作业,每个作业两个任务,即。八问题这是个问题,时间复杂度为,。令,为从出发,经过图中点集的子集表示从点出发,经过中所有的结点次且仅次,回到出发点的最短路径。。例如对于矩阵,,,所以路径为,时间复杂度。计算机算法设计与分析第五章基本检索与周游算法般方法树的三种遍历方式图给定二叉树中根先根后根图的生成树图给定连通图计算机算法设计与分析图宽度优先生成树图深度优先生成树二双连通图和深度优先检索图双连通分图双连通分图深度优先检索树计算机算法设计与分析图双连通分图深度优先检索树深度优先生成树中的虚线条代表逆边,实线条代表树边,结点旁的数代表深度优先树用表示。最低深度优先数......”。
2、“.....而且当且仅当有个使得的儿子时,是个关节点。按后根的次序去各结点的最低深度优先数是对于关节点除根结点以外的其它结点,且是的儿子的结点是关节点,当然叶子结点不用考虑。结点儿子结点有而。结点儿子结点有而结点儿子结点有而由连通图的分类可知分为单连通分图双连通分图两种类型,每个图上都有定的关节点,要识别出图上所有的关节点各有特点,各有优劣,并在解决不同的实际问题中也带给了我很多启示。最后,再次庆幸自己选择了这门课,让我在学习算法知识的同时,还学到了戴老师认真的科研精神,向班上了学霸们学到了上课时认真努力的态度。同时认识到了自己的不足,在以后定要见贤思齐,写好程序,做好项目,学以致用。根据各个关节点的连通性,找到符合条件的通路。对于宽度优先搜索和深度优先搜索,在这里,首先要对各个关节点之间的连接是单连通还是双连通的关系进行确定,再找到在个连通图中关结点之间是有实边连接时,还有没有逆边连接......”。
3、“.....逆边用虚线来表示,再根据算法和算法进行实现,找出符合条件的最优路径。计算机算法设计与分析三决策树博弈树对策树类问题的本质思想,是起源于博弈类游戏,比如,在盘棋赛中,对弈各方都要根据当前的局势,分析和预见以后可能出现的局面,决定自己要采取的各种对策,以争取更好的结果,博弈类问题是种竞争,终局是表示为胜局负局或者和局的情况的棋局,其它的都是非终止棋局。博弈过程在计算机里表示为对策树,对棋局进行判断的评价函数是的过程,该过程可采用剪枝策略,如截断。截断如果个求最小值位置的值判断为小于或等于它父亲的值,那么可以停止生成这个求最小值位置其余儿子的值,在这种规则下终止生成结点值的行动称为截断。截断如果个求最大值位置的值判断为大于或等于它父亲的值,那么可以停止生成这个求最大值位置其余儿子的值,在这种规则下终止生成结点值的行动称为截断......”。
4、“.....所要求的解必须能表示成个元组其中是取自个有穷集例皇后问题皇后问题实际上是个元组问题。计算本质上是基于规划的组符号的变换过程,是物理状态的变迁,而其中的状态及状态的转移深度优化和宽度优化本质上就是离散状态的变迁,对于离散问题,可以用迭代法来进行解决,利用迭代法,公式有收敛和发散两种情况,针对不同的情况,对问题进行求解,再就是得用宽度优先和限界函数两者进行求解,对于不同类型的问题采取不同的方法实现对问题的求解。二回溯法解背包问题设有背包问题,。即,为个元组,要从中找到能使价值最大的元组。计算效益值使用的是背包问题的效益不会超过部分背包问题的效益值,计算部分背包问题的效益值。图回溯法生成的树很容易看出最优解是得到的效益值是......”。
5、“.....占总结点的。三分支限界法解背包问题例已知背包问题,下面的数字背包的下界,上面的数字背包的上界。首先将根,即结点作为结点。由于它不是答案结点,因此过程置和ε。扩展此结点,生成它的两个儿子结点和,放入活结点表中,结点变成下个结点,生成结点和。这样步步向下扩展,在找到结点的情况下终止检索,此时打印出值和路径,算法结束。图分支限界树计算机算法设计与分析第八章总结经过这段时间的学习,我不仅仅了解到了书本上的算法知识,还学到了很多算法的思想和设计思路。感谢戴老师这段时间的精彩讲述,戴老师坚持亲自板书的认真态度打动了我。老师不仅仅是讲述课本的内容,同时还进行扩展,讲图灵的故事阿尔法狗的事情,还有老师探索多边形的最小外切矩形的故事。学习这门课,我最大的收获是学习理工科的人同时还要对社会科学的东西多了解,这样自己才会有机会成为大师,而不仅仅是个技术人员。在节算法课里......”。
6、“.....并主要掌握了分治法贪心算法动态规划法回溯法和分枝限界算法等。其中分治法主要包括二分检索归并分类快速分类等,贪心算法则可以较好的解决背包问题最小生成树问题以及单源点最短路径问题,而动态规划法则可以较好的解决多段图问题,每对结点之间的最短路径问题,最优二分检索树问题,背包问题,矩阵连乘问题,问题以及调度问题等,动态规划将问题实例分解为相似的更小的子问题,并通过求解子问题产生全局最优解。它与分治法和贪心法类似,但不同的是,贪心法的当前选择依赖于已经做出的所有选择,分治法中的各个子问题是独立的子问题,因而旦递归地求出各个子问题的解后,即可将子问题的解合并成问题的解。总之,不同的算目标函数利用上述的两个表达函数,在满足约束函数条件的前提下,求取目标函数的最大值,实现背包问题的求解。例,计算机算法设计与分析,量度标准属在之间......”。
7、“.....是个无向连通图。如果的生成子图,是棵生成树,则称是的棵生成树。当树的各边权重之和达到最小时,则称之为最小生成树。算法的基本思想是设图顶点集合为,首先任意选择图中的点作为起始点,将该点加入集合,再从集合中找到另点使得点到中任意点的权值最小,此时将点也加入集合以此类推,现在的集合再从集合中找到另点使得点到中任意点的权值最小,此时将点加入集合,直至所有顶点全部被加入,此时就构建出了颗。普里姆算法是的边集。,是结点图的成本邻接矩阵,矩阵元素,是个正实数,如果不存在边则为∞。计算棵最小生成树并把它作为个集合存放到数组,中,是最小成本生成树的条边。最小成本生成树的总成本最后赋给。是树中使得,是对所有选择中的最小值←具有最小成本的边←←,←将置初值←←←←←找的其余条边设是≠且,最小的下标,←,←......”。
8、“.....和边的权函数,求由中指定结点到其他各个点的最短路径。生成最短路径的贪心算法,是个有个结点的有向图,它由其邻接矩阵,表示表示,被置以结点到结点的最短路径的长度,这里被置为所有的结点生成最短路径的贪心算法的计算时间是。计算机算法设计与分析第四章动态规划优化问题分类线性优化与非线性优化约束优化和无约束优化确定性优化和随意性优化动态优化和静态优化单目标优化与多目标优化最值与平衡解优化问题求解难度上可分为函数优化目标函数参数优化模型优化模型是什么样的,建立模型二般原理用来求解优化问题。特点多阶段决策满足最优解原理不论初始决策是什么样的,后面的决策相对初始决策产生个最优的决策。三多段图最优性原理对多段图问题成点,则若该路径不经过结点,则,故可得,。每对结点间的最短路径长度算法描述如下,是结点图的成本邻接矩阵......”。
9、“.....←←,←,用,对赋初值←←←,←计算时间为。五最优二分检索树设给定的标识符集合是并假定。设是对检索的概率,是正被检索的标识符恰好满足,设∞,∞时的概率,即种不成功检索情况下的概率,则所有成功检索的概率为,所有不成功检索的概率为,考虑所有可能的成功和不成功检索共种可能的情况,则有。设为不成功检索的等价类,则预期总的成本表示如下计算机算法设计与分析其中左子树右子树成本分别为记则原二分检索树的预期成本可表示为若最优二分检索树,则和将分别是包含,和,及,和,的最优二分检索子树。如图图二分检索树记由,和,构成的二分检索树的成本为则对于最优二分检索树有,则对任何,有当时,有个,要计算的计算,每个,要求找出个量中的最小值,则个,的计算时间为,对所有可能的,总计算时间为例设。最后计算可以得出,。......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。