1、“.....抑制低频信息。表盘图像去噪。由于仪器图像在采集过程中会受到和过旋转轴的条件受到限制,搜索直线的数据量有定的减少,减少了内存占用,提高了程序运行速度。结语近年来,随着国家电网无人值守变电站的大力推广,智能巡检机器人将逐步取代变电站设备的人工巡检。巡检机器人携带可见光红外声音等多种传感器,采集电力仪表设备的声音和图像信息,采用图像处理和模式读数无法识别。基于此,本文提出的迭代最大类间方差法实现了精确的指针区域提取,分割结果如图所示。结果表明,迭代最大类间方差法对各种光照条件都具有鲁棒性。图图指针自动定位与读数识别算法的验证与分析。指针通过表盘中心的联动轴旋转,转动角度大小体现表计示数。指针的中心线通过表盘具有旋开发环境进行仿真实验,以实际测试现场采集的指针式仪表为测试对象。仪表自动识别系统的指针仪表自动识别模块包括读人图像指针仪表区域定位和仪表识别......”。
2、“.....自适应指针区域提巡检机器人中的指针式仪表读数识别系统原稿此外,指针的旋转角度限制在仪器量程范围内,在搜索图像的变换值时,可搜索特定角度范围内的直线,从而减少搜索量,提高搜索效率。系统评价与验证智能巡检机器人系统用于电力系统大型室外变电所仪表的自动识别。而仪器读取识别系统读取采集到的图像,识别结果存储在数据库中,用于后台数据库峰值,然后通过检测参数空间的峰值给出图像中几何曲线的数学方程。变换能有效地避免图像中些特征点的干扰,具有良好的容错性和鲁棒性。本文提出了种基于变换的指针定位算法,用于检测过表盘转动轴心的指针位置。此外,指针的旋转角度限制在仪器量程范围内,在搜索图像的法,常用于直线和圆的检测。它将图像坐标空间转换为参数空间,得到些峰值,然后通过检测参数空间的峰值给出图像中几何曲线的数学方程......”。
3、“.....具有良好的容错性和鲁棒性。本文提出了种基于变换的指针定位算法,用于检测过表盘转动轴心的指针位置指针区域,采用高通滤波器对仪器图像进行增强,抑制低频信息。摘要巡检机器人能自动识别仪表设备的状态,先准确定位图像中的仪表设备,在此基础上,实现了仪表读数的自动识别。巡检机器人中的指针式仪表读数识别系统原稿。指针定位。如图所示,仪表图像中指针具有顶端细,底,当仪表图像在过亮或过暗的光照条件下采集时,目标区域和背景区域的灰度变化很小。采用传统的最大类间方差法进行值阈值分割后,值图像中存在较大的黑白区域,无法从仪表表盘区域正确分割,严重影响了后续的指针提取。巡检机器人中的指针式仪表读数识别系统原稿。表盘图像去噪。由于仪器图像在采集端粗,灰度关于中心线对称的特性,指针的中心线必须穿过旋转轴。因此,可通过过表盘转动轴心提取指针的中心线来实现指针的定位,并使用直线提取方法来提取指针的中心线......”。
4、“.....常用于直线和圆的检测。它将图像坐标空间转换为参数空间,得到些摘要巡检机器人能自动识别仪表设备的状态,先准确定位图像中的仪表设备,在此基础上,实现了仪表读数的自动识别。高通增强。为了提高背景与目标区域的灰度差,准确提取指针区域,采用高通滤波器对仪器图像进行增强,抑制低频信息。表盘图像去噪。由于仪器图像在采集过程中会受到指针区域等现象,提高了仪表读数识别的精度。并且由于角度搜索的范围和过旋转轴的条件受到限制,搜索直线的数据量有定的减少,减少了内存占用,提高了程序运行速度。结语近年来,随着国家电网无人值守变电站的大力推广,智能巡检机器人将逐步取代变电站设备的人工巡检。巡检机器人携带可见光红外声音等应提取基于变换的指针定位和读数识别。自适应指针区域提取算法的验证与分析。实验分析表明,采用传统的最大类间方差法对仪器图像进行值化处理......”。
5、“.....而对光线暗淡或摄像机过度曝光时太暗或太亮的仪器图像,由于仪器图像中背景区域和指针表盘区域的变换值时,可搜索特定角度范围内的直线,从而减少搜索量,提高搜索效率。系统评价与验证智能巡检机器人系统用于电力系统大型室外变电所仪表的自动识别。而仪器读取识别系统读取采集到的图像,识别结果存储在数据库中,用于后台数据库和专家系统的和数据分析。仪器识别系统以为软端粗,灰度关于中心线对称的特性,指针的中心线必须穿过旋转轴。因此,可通过过表盘转动轴心提取指针的中心线来实现指针的定位,并使用直线提取方法来提取指针的中心线。图仪表图像中指针特征变换是种检测特定边界形状的方法,常用于直线和圆的检测。它将图像坐标空间转换为参数空间,得到些此外,指针的旋转角度限制在仪器量程范围内,在搜索图像的变换值时,可搜索特定角度范围内的直线,从而减少搜索量,提高搜索效率......”。
6、“.....而仪器读取识别系统读取采集到的图像,识别结果存储在数据库中,用于后台数据库别系统原稿。指针定位。如图所示,仪表图像中指针具有顶端细,底端粗,灰度关于中心线对称的特性,指针的中心线必须穿过旋转轴。因此,可通过过表盘转动轴心提取指针的中心线来实现指针的定位,并使用直线提取方法来提取指针的中心线。图仪表图像中指针特征变换是种检测特定边界形状的方巡检机器人中的指针式仪表读数识别系统原稿多种传感器,采集电力仪表设备的声音和图像信息,采用图像处理和模式识别技术实现对各种设备状态的自动识别。参考文献张志飞变电站机器人智能巡检系统应用研究北京华北电力大学,高曼龙智能巡检机器人在变电站中的应用价值工程,吴文怡维最大类间方差阈值分割的快速迭代算法中国体视学与图像分析此外,指针的旋转角度限制在仪器量程范围内,在搜索图像的变换值时,可搜索特定角度范围内的直线,从而减少搜索量......”。
7、“.....系统评价与验证智能巡检机器人系统用于电力系统大型室外变电所仪表的自动识别。而仪器读取识别系统读取采集到的图像,识别结果存储在数据库中,用于后台数据库动轴旋转,转动角度大小体现表计示数。指针的中心线通过表盘具有旋转轴和直线形状的特点。本文提出的基于变换的指针中心提取算法,利用指针必须通过表盘转动轴心的约束条件,提高了指针中心线提取和读数识别的精度,缩短了指针中心线的搜索时间。同时,还解决了指针中心线未通过旋转轴心偏离仪表图像通常受到环境的影响。现有的识别算法为,利用仪表表盘的形状特征,通过模板匹配或椭圆拟合确定仪表表盘在图像中的基本位置及区域范围。其算法虽具备定实时性和鲁棒性,但并不适用于巡检机器人采集到的变电站仪表图像。这是因变电站设备结构复杂,在机器人采集到的图像中,背景紊乱,并不仅包含灰度差小,传统的最大类间方差法无法提取表盘区域,从而导致后续仪表读数无法识别。基于此......”。
8、“.....分割结果如图所示。结果表明,迭代最大类间方差法对各种光照条件都具有鲁棒性。图图指针自动定位与读数识别算法的验证与分析。指针通过表盘中心的端粗,灰度关于中心线对称的特性,指针的中心线必须穿过旋转轴。因此,可通过过表盘转动轴心提取指针的中心线来实现指针的定位,并使用直线提取方法来提取指针的中心线。图仪表图像中指针特征变换是种检测特定边界形状的方法,常用于直线和圆的检测。它将图像坐标空间转换为参数空间,得到些和专家系统的和数据分析。仪器识别系统以为软件开发环境进行仿真实验,以实际测试现场采集的指针式仪表为测试对象。仪表自动识别系统的指针仪表自动识别模块包括读人图像指针仪表区域定位和仪表识别。本文提出的指针识别算法主要解决两个关键问题适应各种光照条件下的指针区域自适法,常用于直线和圆的检测。它将图像坐标空间转换为参数空间,得到些峰值......”。
9、“.....变换能有效地避免图像中些特征点的干扰,具有良好的容错性和鲁棒性。本文提出了种基于变换的指针定位算法,用于检测过表盘转动轴心的指针位置到噪声的干扰,可采用图像平滑的方法来降低噪声对仪器图像质量的影响。如果平滑窗口太大或太小,仪器图像的细节将变得模糊或边界轮廓将被破坏。本文采用方形窗口的中值滤波去除图像噪声,不仅达到了去噪的目的,而且保持了图像的细节信息。在实际变电所采集的指针式仪表灰度图像值化阈值分割过程中发现表区域,还同时囊括了其它设备。在指针识别方面,通常在获取仪表表盘的子图像后,再使用多种的图像处理方法提取仪表指针的位置及指向方向。另外,智能机器人能自动实现对仪表设备的状态识别,必须进行仪表设备在图像中的准确定位,在这基础上,实现仪表读数的自动识别。巡检机器人中的指针式仪表读数识巡检机器人中的指针式仪表读数识别系统原稿此外......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。