1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....。反幂法主要用来求特征向量,是在用种方法求得的个特征值的近似值之后,应用反幂法于上。也就是说,在实际计算中,常用的是带位移的反幂法。设是给定的位移。带原点位移的反幂法的迭代格式如下从上述的迭代格式上可以看出,反幂法每迭代次就需要解个线性方程组,这比幂法的运算量大得多。但是,由于方程组的系数矩阵不随着变化,所以,可以先把系数矩阵做分解,然后就只需要解两个三角矩阵方程组就可以了。方法......”。
2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....为下三角无对角元矩阵,为上三角无对角元矩阵。记,。迭代。但是,由于方程组的系数矩阵不随着变化,所以,的模最小特征值和对应的特征向量。因此,其基本迭代格式为是的模最大分量,。反幂法主要用来求特征向量,是在用种方法求得的个特征值的近似值之后,应用反幂法于上。也就是说,在实际计算中,常用的是带位移的反幂法。下从上述的迭代格式上可以看出,反幂法每迭代次就需要解个线性方程组......”。
3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....为上三角矩阵。方法有很多加速和优化的方法,例如双重步位移对于规模较大的矩阵,我们般会采用迭代法的方法来解方程。符号定义,,为对角元矩阵,为下三角无对角元矩阵,为上三角无对角元矩阵。记,。迭代。迭代迭代。,其中,称作松弛因子。当时,相应的迭代法叫做超松弛迭代法当时,叫做低松弛迭代法当时,就是迭代法。其中超松弛迭代法简称为迭代法。迭代法的收敛速度与的选取有很大的关系......”。
4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....但是,由于方程组的系数矩阵不随着变化,所以,可以先把系数矩阵做分解,然后就只需要解两个三角矩阵方程组就可以了。方法。方法是自电子计算机问世以来矩阵计算的重大进展之,也是目前计算般矩阵的全部特征值和特征向量的最有效方法之。方法是利用正交相似变换将个给定的矩阵逐步约化为上三角矩阵或拟上三角矩阵的种迭代方法,其基本收敛速度是二次的,当然原矩阵实对称时,可以达到三次收敛......”。
5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....那么就需要利用已经求得的特征值把原矩阵降阶。最简单实用的收缩技巧是利用正交变换。假设并假设酉矩阵使得这里,。将上式带入上上式并整理可得即的右下为个的矩阵,它的特征值就是除了以外的特征值。那么对的右下矩阵继续做幂法即可。而得到的变换可以使用复的变换来实现。反幂法。反幂法又称作反迭代法,就是应用幂法作用在上,来求的模最小特征值和对应的特征向量。因此......”。
6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....设是给定的位移。也就是说,在实际计算中,常用的是带位移的反幂法。部分内容简介的模最小特征值和对应的特征向量。因此,其基本迭代格式为是的模最大分量,。反幂法主要用来求特征向量,是在用种方法求得的个特征值的近似值之后,应用反幂法于上。也就是说,在实际计算中,常用的是带位移的反幂法。设是给定的位移。带原点位移的反幂法的迭代格式如下从上述的迭代格式上可以看出......”。
7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....幂法是就是那种个矩阵的模最大特征值和对应的特征向量的种迭代方法。假定是可对角化的矩阵。那么可以得到个式子,其中是的特征向量空间中的个向量,那么当充分大时,就是特征值的对应的个特征向量。可以由此得到个迭代格式是的模最大分量其中是任意给定的初始向量,通常要求∞......”。
8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....也是目前计算般矩阵的全部特征值和特征向量的最有效方法之。方法是利用正交相似变换将个给定的矩阵逐步约化为上三角矩阵或拟上三角矩阵的种迭代方法,其基本收敛速度是二次的,当然原矩阵实对称时,可以达到三次收敛。算法的基本迭代格式如下其中为酉矩阵,为上三角矩阵。方法有很多加速和优化的方法,例如双重步位移的迭代方法。考虑如下的迭代格式带位移的方法......”。
9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....高立,张平文数值线性代数北京北京大学出版社,曹志浩矩阵特征值问题上海上海科学技术出版社,曹志浩,张玉德,李瑞遐矩阵计算和方程求根北京高等教育出版社,徐树方矩阵计算的理论与方法北京北京大学出版社,黄正达,李方,温道伟,汪国军高等代数浙江浙江大学出版社,叶兴德,程晓良,陈明飞,薛莲数值分析基础浙江浙江大学出版社......”。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。