帮帮文库

ppt 2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿) ㊣ 精品文档 值得下载

🔯 格式:PPT | ❒ 页数:23 页 | ⭐收藏:0人 | ✔ 可以修改 | @ 版权投诉 | ❤️ 我的浏览 | 上传时间:2022-06-24 22:52

《2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)》修改意见稿

1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....其中正确命题有个有大批产品,已知次品率为,从中任取件,必有件是次品做次抛硬币试验,结果次出现正面,因此正面出现概率是随机事件发生频率就是这个随机事件发生概率解析错,不定是件次品错,是频率而非概率错,频率不等于概率,这是两个不同概念答案易将概率与频率混淆,频率随着试验次数变化而变化,而概率是个常数互斥事件是不可能同时发生两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之必须有个发生,因此,对立事件是互斥事件特殊情况,而互斥事件未必是对立事件解析两个事件是对立事件,则它们定互斥,反之不定成立答案在运动会火炬传递活动中,有编号为名火炬手若从中任选人,则选出火炬手编号相连概率为解析从中任取三个数结果有种,其中选出火炬手编号相连事件有,选出火炬手编号相连概率为答案湖北十市联考从装有个红球和个黑球口袋内任取个球......”

2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....有张移动卡和张联通卡,从中任取张,若事件“张全是移动卡”概率是,那么概率是事件是至多有张移动卡恰有张移动卡第四节随机事件概率稳定性概率频率反映了个随机事件出现频繁程度,但频率是随机,而是个确定值,因此,人们用来反映随机事件发生可能性大小,有时也用作为随机事件概率估计值概率几个基本性质概率取值范围必然事件概率不可能事件概率概率概率频率概率加法公式如果事件与事件互斥,则对立事件概率若事件与事件互为对立事件,则为必然事件,事件定义性质互斥事件在个随机试验中,我们把次试验下不能两个事件与称作互斥事件,事件,是互斥事件„事件„,任意两个互斥对立事件在个随机试验中,两个试验不会发生,并且定发生事件和称为对立事件同时发生同时有个„答案教材习题改编射手在同条件下进行射击,结果如下射击次数击中靶心次数这个射手射击次......”

3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....有编号为名火炬手若从中任选人,则选出火炬手编号相连概率为解析从中任取三个数结果有种,其中选出火炬手编号相连事件有,选出火炬手编号相连概率为答案湖北十市联考从装有个红球和个黑球口袋内任取个球,那么互斥而不对立两个事件是“至少有个黑球”与“都是黑球”“至少有个黑球”与“都是红球”“至少有个黑球”与“至少有个红球”“恰有个黑球”与“恰有两个黑球”解析易错题在次随机试验中,彼此互斥事件,概率分别为则下列说法正确是与是互斥事件,也是对立事件与是互斥事件,也是对立事件与是互斥事件,但不是对立事件与是互斥事件,也是对立事件解析在张电话卡中,有张移动卡和张联通卡,从中任取张,若事件“张全是移动卡”概率是,那么概率是事件是至多有张移动卡恰有张移动卡都不是移动卡至少有张移动卡解析至多有张移动卡包含“张移动卡,张联通卡”“两张全是联通卡”两个事件......”

4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....故选答案日期天气晴雨阴阴阴雨阴晴晴晴日期天气阴晴晴晴晴晴阴雨阴阴日期天气晴阴晴晴晴阴晴晴晴雨在月份任取天,估计西安市在该天不下雨概率西安市学校拟从月份个晴天开始举行连续天运动会,估计运动会期间不下雨概率解析“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾可回收物其他垃圾试估计厨余垃圾投放正确概率试估计生活垃圾投放错误概率解厨余垃圾投放正确概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量设生活垃圾投放错误为事件,则事件表示生活垃圾投放正确事件概率约为“厨余垃圾”箱里厨余垃圾量“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量总和除以生活垃圾总量,即约为,所以约为排队人数人及人以上概率求至多人排队等候概率是多少至少人排队等候概率是多少解析由题悟法求复杂互斥事件概率种方法直接求法将所求事件分解为些彼此互斥事件和......”

5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....选出火炬手编号相连概率为答案湖北十市联考从装有个红球和个黑球口袋内任取个球,那么互斥而不对立两个事件是“至少有个黑球”与“都是黑球”“至少有个黑球”与“都是红球”“至少有个黑球”与“至少有个红球”“恰有个黑球”与“恰有两个黑球”解析易错题在次随机试验中,彼此互斥事件,概率分别为则下列说法正确是与是互斥事件,也是对立事件与是互斥事件,也是对立事件与是互斥事件,但不是对立事件与是互斥事件,也是对立事件解析在张电话卡中,有张移动卡和张联通卡,从中任取张,若事件“张全是移动卡”概率是,那么概率是事件是至多有张移动卡恰有张移动卡都不是移动卡至少有张移动卡解析至多有张移动卡包含“张移动卡,张联通卡”“两张全是联通卡”两个事件,它是“张全是移动卡”对立事件,故选答案日期天气晴雨阴阴阴雨阴晴晴晴日期天气阴晴晴晴晴晴阴雨阴阴日期天气晴阴晴晴晴阴晴晴晴雨在月份任取天......”

6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....则事件表示生活垃圾投放正确事件概率约为“厨余垃圾”箱里厨余垃圾量“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量总和除以生活垃圾总量,即约为,所以约为排队人数人及人以上概率求至多人排队等候概率是多少至少人排队等候概率是多少解析由题悟法求复杂互斥事件概率种方法直接求法将所求事件分解为些彼此互斥事件和,运用互斥事件概率加法公式计算间接求法先求此事件对立事件,再用公式求得,即运用逆向思维正难则反,特别是“至多”“至少”型题目,用间接求法就会较简便提醒应用互斥事件概率加法公式,定要注意首先确定各个事件是否彼此互斥,然后求出各事件发生概率,再求和或差解析“课后三维演练”见“课时跟踪检测六十四”单击进入电子文档从中任选人,则选出火炬手编号相连概率为解析从中任取三个数结果有种......”

7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....再用公式求得,即运用逆向思维正难则反,特别是“至多”“至少”型题目,用间接求法就会较简便提醒应用互斥事件概率加法公式,定要注意首先确定各个事件是否彼此互斥,然后求出各事件发生概率,再求和或差解析“课后三维演练”见“课时跟踪检测六十四”单击进入电子文档从中任选人,则选出火炬手编号相连概率为解析从中任取三个数结果有种,其中选出火炬手编号相连事件有,选出火炬手编号相连概率为答案湖北十市联考从装有个红球和个黑球口袋内任取个球,那么互斥而不对立两个事件是“至少有个黑球”与“都是黑球”“至少有个黑球”与“都是红球”“至少有个黑球”与“至少有个红球”“恰有个黑球”与“恰有两个黑球”解析易错题在次随机试验中,彼此互斥事件,概率分别为则下列说法正确是与是互斥事件,也是对立事件与是互斥事件,也是对立事件与是互斥事件,但不是对立事件与是互斥事件......”

8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....定要注意首先确定各个事件是否彼此互斥,然后求出各事件发生概率,再求和或差解析“课后三维演练”见“课时跟踪检测六十四”单击进入电子文档编射手在同条件下进行射击,结果如下射击次数击中靶心次数这个射手射击次,击中靶心概率约是答案教材习题改编给出下列三个命题,其中正确命题有个有大批产品,已知次品率为,从中任取件,必有件是次品做次抛硬币试验,结果次出现正面,因此正面出现概率是随机事件发生频率就是这个随机事件发生概率解析错,不定是件次品错,是频率而非概率错,频率不等于概率,这是两个不同概念答案易将概率与频率混淆,频率随着试验次数变化而变化,而概率是个常数互斥事件是不可能同时发生两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之必须有个发生,因此,对立事件是互斥事件特殊情况,而互斥事件未必是对立事件解析两个事件是对立事件,则它们定互斥......”

9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....估计运动会期间不下雨概率解析“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾可回收物其他垃圾试估计厨余垃圾投放正确概率试估计生活垃圾投放错误概率解厨余垃圾投放正确概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量设生活垃圾投放错误为事件,则事件表示生活垃圾投放正确事件概率约为“厨余垃圾”箱里厨余垃圾量“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量总和除以生活垃圾总量,即约为,所以约为排队人数人及人以上概率求至多人排队等候概率是多少至少人排队等候概率是多少解析由题悟法求复杂互斥事件概率种方法直接求法将所求事件分解为些彼此互斥事件和,运用互斥事件概率加法公式计算间接求法先求此事件对立事件,再用公式求得,即运用逆向思维正难则反,特别是“至多”“至少”型题目......”

下一篇
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
1 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
3 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
4 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
5 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
6 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
7 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
8 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
9 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
10 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
11 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
12 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
13 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
14 页 / 共 23
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
2017届高三数学(理)一轮总复习课件第9章_第4节_随机事件的概率(人教通用)PPT文档(定稿)
15 页 / 共 23
温馨提示

1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。

2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。

3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。

4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。

5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。

  • 文档助手,定制查找
    精品 全部 DOC PPT RAR
换一批