1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....我们就要建立相关的理论体系,为了研究的需要,我们必须对向量中的些现象作出合理的约定或解释,特别是两个向量的相互关系对此,我们将作些研究思考向量由其模和方向所确定对于两个向量,就其模等与不等,方向同与不同而言,有哪几种可能情形模相等,方向相同模相等,方向不相同模不相等,方向相同模不相等,方向不相同思考两个向量不能比较大小,只有“相等”与“不相等”的区别,你认为如何规定两个向量相等长度相等且方向相同的向量叫做相等向量向量与相等记作思考用有向线段表示非零向量和,如果,那么四点的位置关系有哪几种可能情形思考对于非零向量和,如果,通过平移使起点与重合,那么终点与的位置关系如何长度相等且方向相反的向量叫做相反向量思考非零向量与称为相反向量,般地,如何定义相反向量思考如果非零向量与是相反向量,通过平移使起点与重合,那么终点与的位置关系如何探究二平行向量与共线向量思考如果两个向量所在的直线互相平行......”。
2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....若那么吗例判断下列命题是否正确若两个单位向量共线,则这两个向量相等不相等的两个向量定不共线在四边形中,若向量与共线,则该四边形是梯形对于不同三点,向量与定不共线理论迁移例如图,设为正六边形的中心,分别写出与相等的向量例如图,在中,分别是边上的点,已知求证小结作业相等向量与相反向量是并列概念,平行向量与共线向量是同概念,相等向量相反向量与平行向量是包含概念任意两个相等的非零向量,都可用同条有向线段表示,并且与有向线段的起点无关向量的平行共线与平面几何中线段的平行共线是不同的概念,平行向量共线向量对应的有向线段既可以平行也可以共线平行向量不具有传递性,但非零平行向量和相等向量都具有传递性作业习题组,组,平面向量的实际背景及基本概念问题提出向量与数量有什么联系和区别向量有哪几种表示联系向量与数量都是有大小的量区别向量有方向且不能比较大小,数量无方向且能比较大小向量可以用有向线段表示......”。
3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....则向量与相等或相反吗反之,若向量与相等或相反,则向量与平行或共线吗思考对于向量的直线,在上任取点,分别作,那么点的位置关系如何思考上述分析表明,任组平行向量都可以移动到同直线上,因此,平行向量也叫做共线向量如向量所在的直线定互相平行吗方向相同或相反思考零向量与向量平行吗规定零向量与任向量平行思考将向量平移,不会改变其长度和方向如图,设是组平行向量,任作条与向量所在直线平行的向量所在的直线定互相平行吗方向相同或相反思考零向量与向量平行吗规定零向量与任向量平行思考将向量平移,不会改变其长度和方向如图,设是组平行向量,任作条与向量所在直线平行的直线,在上任取点,分别作,那么点的位置关系如何思考上述分析表明,任组平行向量都可以移动到同直线上,因此,平行向量也叫做共线向量如果非零向量与是共线向量,那么点是否定共线思考若向量与平行或共线,则向量与相等或相反吗反之,若向量与相等或相反,则向量与平行或共线吗思考对于向量,若那么吗思考对于向量......”。
4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....任组平行向量都可以移动到同直线上,因此,平行向量也叫做共线向量如果非零向量与是共线向量,那么点是否定共线思考若向量与平行或共线,则向量思考将向量平移,不会改变其长度和方向如图,设是组平行向量,任作条与向量所在直线平行的直线,在上任取点,分别作,那么点的位置关系如何向量的方向有什么关系思考方向相同或相反的非零向量叫做平行向量,向量与平行记作,那么平行向量所在的直线定互相平行吗方向相同或相反思考零向量与向量平行吗规定零向量与任向量平行思考如果非零向量与是相反向量,通过平移使起点与重合,那么终点与的位置关系如何探究二平行向量与共线向量思考如果两个向量所在的直线互相平行,那么这两个思考对于非零向量和,如果,通过平移使起点与重合,那么终点与的位置关系如何长度相等且方向相反的向量叫做相反向量思考非零向量与称为相反向量,般地,如何定义相反向量认为如何规定两个向量相等长度相等且方向相同的向量叫做相等向量向量与相等记作思考用有向线段表示非零向量和,如果......”。
5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....则这两个向量相等不相等的两个向量定不共线在四边形中,若向量与共线,则该四边形是梯形对于不同三点,向量与定不共线理论迁移例如图,设为正六边形的中心,分别写出与相等的向量例如图,在中,分别是边上的点,已知求证小结作业相等向量与相反向量是并列概念,平行向量与共线向量是同概念,相等向量相反向量与平行向量是包含概念任意两个相等的非零向量,都可用同条有向线段表示,并且与有向线段的起点无关向量的平行共线与平面几何中线段的平行共线是不同的概念,平行向量共线向量对应的有向线段既可以平行也可以共线平行向量不具有传递性,但非零平行向量和相等向量都具有传递性作业习题组,组,和方向所确定对于两个向量,就其模等与不等,方向同与不同而言,有哪几种可能情形模相等,方向相同模相等,方向不相同模不相等,方向相同模不相等,方向不相同思考两个向量不能比较大小,只有“相等”与“不相等”的区别......”。
6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....就其模等与不等,方向同与不同而言,有哪几种可能情形模相等,方向相同模相等,方向不相同模不相等,方向相同模不相等,方向不相同思考两个向量不能比较大小,只有“相等”与“不相等”的区别,你中线段的平行共线是不同的概念,平行向量共线向量对应的有向线段既可以平行也可以共线平行向量不具有传递性,但非零平行向量和相等向量都具有传递性作业习题组,组,和方向所确定对于两个向量相等向量与相反向量是并列概念,平行向量与共线向量是同概念,相等向量相反向量与平行向量是包含概念任意两个相等的非零向量,都可用同条有向线段表示,并且与有向线段的起点无关向量的平行共线与平面几何相等的向量例如图,在中,分别是边上的点,已知求证小结作业定不共线在四边形中,若向量与共线,则该四边形是梯形对于不同三点,向量与定不共线理论迁移例如图,设为正六边形的中心,分别写出与,若那么吗思考对于向量,若那么吗例判断下列命题是否正确若两个单位向量共线,则这两个向量相等不相等的两个向量果非零向量与是共线向量......”。
7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....向量与平行记作,那么平行向量所在的直线定互相平行吗方向相同或相反思考零向量与向量平行吗规定零向量与任向量平行思考将向量平移,不会改变其长度和方向如图,设是组平行向量,任作条与向量所在直线平行的直线,在上任取点,分别作,那么点的位置关系如何思考上述分析表明,任组平行向量都可以移动到同直线上,因此,平行向量也叫做共线向量如果非零向量与是共线向量,那么点是否定共线思考若向量与平行或共线,则向量与相等或相反吗反之,若向量与相等或相反,则向量与平行或共线吗思考对于向量,若那么吗思考对于向量,若那么吗例判断下列命题是否正确若两个单位向量共线,则这两个向量相等不相等的两个向量定不共线在四边形中,若向量与共线,则该四边形是梯形对于不同三点,向量与定不共线理论迁移例如图,设为正六边形的中心,分别写出与相等的向量向量所在的直线定互相平行吗方向相同或相反思考零向量与向量平行吗规定零向量与任向量平行思考将向量平移......”。
8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....如果,那么四点的位置关系有哪几种可能情形思考对于非零向量和,如果,通过平移使起点与重合,那么终点与的位置关系如何长度相等且方向相反的向量叫做相反向量思考非零向量与称为相反向量,般地,如何定义相反向量思考如果非零向量与是相反向量,通过平移使起点与重合,那么终点与的位置关系如何探究二平行向量与共线向量思考如果两个向量所在的直线互相平行,那么这两个向量的方向有什么关系思考方向相同或相反的非零向量叫做平行向量,向量与平行记作,那么平行向量所在的直线定互相平行吗方向相同或相反思考零向量与向量平行吗规定零向量与任向量平行思考将向量平移,不会改变其长度和方向如图,设是组平行向量,任作条与向量所在直线平行的直线,在上任取点,分别作,那么点的位置关系如何思考上述分析表明,任组平行向量都可以移动到同直线上,因此,平行向量也叫做共线向量如果非零向量与是共线向量,那么点是否定共线思考若向量与平行或共线,则向量与相等或相反吗反之,若向量与相等或相反......”。
9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....那么吗思考对于向量,若那么吗例判断下列命题是否正确若两个单位向量共线,则这两个向量相等不相等的两个向量定不共线在四边形中,若向量与共线,则该四边形是梯形对于不同三点,向量与定不共线理论迁移例如图,设为正六边形的中心,分别写出与相等的向量例如图,在中,分别是边上的点,已知求证小结作业相等向量与相反向量是并列概念,平行向量与共线向量是同概念,相等向量相反向量与平行向量是包含概念任意两个相等的非零向量,都可用同条有向线段表示,并且与有向线段的起点无关向量的平行共线与平面几何中线段的平行共线是不同的概念,平行向量共线向量对应的有向线段既可以平行也可以共线平行向量不具有传递性,但非零平行向量和相等向量都具有传递性作业习题组,组,吗例判断下列命题是否正确若两个单位向量共线,则这两个向量相等不相等的两个向量定不共线在四边形中,若向量与共线,则该四边形是梯形对于不同三点与相等或相反吗反之,若向量与相等或相反,则向量与平行或共线吗思考对于向量,若那么吗思考对于向量......”。
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。