帮帮文库

ppt 36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档 ㊣ 精品文档 值得下载

🔯 格式:PPT | ❒ 页数:22 页 | ⭐收藏:0人 | ✔ 可以修改 | @ 版权投诉 | ❤️ 我的浏览 | 上传时间:2022-06-24 23:09

《36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档》修改意见稿

1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....光滑斜面上个木块受到的重力为,下滑力为,木块对斜面的压力为,这三个力的方向分别如何三者有何相互关系非零向量与向量共线存在唯实数,使在物理中,力是个向量,力的合成就是向量的加法运算力也可以分解,任何个大小不为零的力,都可以分解成两个不同方向的分力之和将这种力的分解拓展到向量中来,就会形成个新的数学理论探究平面向量基本定理思考给定平面内任意两个向量如何求作向量和思考如图,设为三条共点射线,为上点,能否在上分别找点,使四边形为平行四边形思考在下列两图中,向量不共线,能否在直线上分别找点,使,思考若上述向量都为定向量,且,不共线,则实数,是否存在是否唯思考若向量与或共线,还能用表示吗思考根据上述分析,平面内任向量都可以由这个平面内两个不共线的向量,表示出来,从而可形成个定理你能完整地描述这个定理的内容吗若是同平面内的两个不共线向量,则对于这平面内的任意向量......”

2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....有且只有对实数,使得我们把有序数对,叫做向量的坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,上式叫做向量的坐标表示那么的几何意义如何思考相等向量的坐标必然相等,作向量,则此时点是坐标是什么,理论迁移例如图,已知向量,求作向量例如图,写出向量,的坐标例如图,在平行四边形中,分别是的中点,点在上,且,以,为基底分别表示向量和小结作业平面向量基本定理是建立在向量加法和数乘运算基础上的向量分解原理,同时又是向量坐标表示的理论依据,是个承前起后的重要知识点向量的夹角是反映两个向量相对位置关系的个几何量,平行向量的夹角是或,垂直向量的夹角是向量的坐标表示是种向量与坐标的对应关系,它使得向量具有代数意义将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标作业习题组,平面向量的基本定理及坐标表示问题提出向量加法与减法有哪几种几何运算法则怎样理解向量的数乘运算时,与方向相同时,与方向相反时......”

3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....对于两个非零向量和,作如图为了反映这两个向量的位置关系,称为向量与的夹角你认为这平面内所有向量的组基底那么同平面内可以作基底的向量有多少组不同基底对应向量的表示式是否相同若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使能完整地描述这个定理的内容吗若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使思考上述定理称为平面向量基本定理,不共线向量,叫做表示这能完整地描述这个定理的内容吗若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使思考上述定理称为平面向量基本定理,不共线向量,叫做表示这平面内所有向量的组基底那么同平面内可以作基底的向量有多少组不同基底对应向量的表示式是否相同若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使探究二平面向量的正交分解及坐标表示思考不共线的向量有不同的方向,对于两个非零向量和,作如图为了反映这两个向量的位置关系......”

4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....分别取与轴轴方向相同的两个单位向量作为基底,对于平面内的个向量,由平面向量基本定理知,有且只有对实数,使得两个向量能否作为平面内所有向量的组基底思考把个向量分解为两个互相垂直的向量,叫做把向量正交分解如图,向量是两个互相垂直的单位向量,向量与的夹角是,且,以向量为基量的位置关系,称为向量与的夹角你认为向量的夹角的取值范围应如何约定为宜思考如果向量与的夹角是,则称向量与垂直,记作⊥互相垂直的平面内的任意向量,有且只有对实数使探究二平面向量的正交分解及坐标表示思考不共线的向量有不同的方向,对于两个非零向量和,作如图为了反映这两个向理称为平面向量基本定理,不共线向量,叫做表示这平面内所有向量的组基底那么同平面内可以作基底的向量有多少组不同基底对应向量的表示式是否相同若是同平面内的两个不共线向量,则对于这个不共线的向量,表示出来,从而可形成个定理你能完整地描述这个定理的内容吗若是同平面内的两个不共线向量,则对于这平面内的任意向量......”

5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....则称向量与垂直,记作⊥互相垂直的两个向量能否作为平面内所有向量的组基底思考把个向量分解为两个互相垂直的向量,叫做把向量正交分解如图,向量是两个互相垂直的单位向量,向量与的夹角是,且,以向量为基底,向量如何表示思考在平面直角坐标系中,分别取与轴轴方向相同的两个单位向量作为基底,对于平面内的个向量,由平面向量基本定理知,有且只有对实数,使得我们把有序数对,叫做向量的坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,上式叫做向量的坐标表示那么的几何意义如何思考相等向量的坐标必然相等,作向量,则此时点是坐标是什么,理论迁移例如图,已知向量,求作向量例如图,写出向量,的坐标例如图,在平行四边形中,分别是的中点,点在上,且,以,为基底分别表示向量和则实数,是否存在是否唯思考若向量与或共线,还能用表示吗思考根据上述分析......”

6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....是否存在是否唯思考若向量与或共线,还能用表示吗思考根据上述分析,平面内任向量都可以由这个平面内两例如图,在平行四边形中,分别是的中点,点在上,且,以,为基底分别表示向量和点是坐标是什么,理论迁移例如图,已知向量,求作向量例如图,写出向量,的坐标的坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,上式叫做向量的坐标表示那么的几何意义如何思考相等向量的坐标必然相等,作向量,则此时在平面直角坐标系中,分别取与轴轴方向相同的两个单位向量作为基底,对于平面内的个向量,由平面向量基本定理知,有且只有对实数,使得我们把有序数对,叫做向量考把个向量分解为两个互相垂直的向量,叫做把向量正交分解如图,向量是两个互相垂直的单位向量,向量与的夹角是,且,以向量为基底,向量如何表示思考向量的夹角的取值范围应如何约定为宜思考如果向量与的夹角是,则称向量与垂直......”

7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....不共线向量,叫做表示这平面内所有向量的组基底那么同平面内可以作基底的向量有多少组不同基底对应向量的表示式是否相同若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使探究二平面向量的正交分解及坐标表示思考不共线的向量有不同的方向,对于两个非零向量和,作如图为了反映这两个向量的位置关系,称为向量与的夹角你认为向量的夹角的取值范围应如何约定为宜思考如果向量与的夹角是,则称向量与垂直,记作⊥互相垂直的两个向量能否作为平面内所有向量的组基底思考把个向量分解为两个互相垂直的向量,叫做把向量正交分解如图,向量是两个互相垂直的单位向量,向量与的夹角是,且,以向量为基底,向量如何表示思考在平面直角坐标系中,分别取与轴轴方向相同的两个单位向量能完整地描述这个定理的内容吗若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使思考上述定理称为平面向量基本定理,不共线向量......”

8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....表示出来,从而可形成个定理你能完整地描述这个定理的内容吗若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使思考上述定理称为平面向量基本定理,不共线向量,叫做表示这平面内所有向量的组基底那么同平面内可以作基底的向量有多少组不同基底对应向量的表示式是否相同若是同平面内的两个不共线向量,则对于这平面内的任意向量,有且只有对实数使探究二平面向量的正交分解及坐标表示思考不共线的向量有不同的方向,对于两个非零向量和,作如图为了反映这两个向量的位置关系,称为向量与的夹角你认为向量的夹角的取值范围应如何约定为宜思考如果向量与的夹角是,则称向量与垂直,记作⊥互相垂直的两个向量能否作为平面内所有向量的组基底思考把个向量分解为两个互相垂直的向量,叫做把向量正交分解如图,向量是两个互相垂直的单位向量,向量与的夹角是,且,以向量为基底,向量如何表示思考在平面直角坐标系中,分别取与轴轴方向相同的两个单位向量作为基底,对于平面内的个向量......”

9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....对于两个非零向量和,作如图为了反映这两个向量的位置关系,称为向量与的夹角你认为向量的夹角的取值范围应如何约定为宜思考如果向量与的夹角是,则称向量与垂直,记作⊥互相垂直的两个向量能否作为平面内所有向量的组基底思考把个向量分解为两个互相垂直的向量,叫做把向量正交分解如图,向量是两个互相垂直的单位向量,向量与的夹角是,且,以向量为基底,向量如何表示思考在平面直角坐标系中,分别取与轴轴方向相同的两个单位向量作为基底,对于平面内的个向量,由平面向量基本定理知,有且只有对实数,使得我们把有序数对,叫做向量的坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,上式叫做向量的坐标表示那么的几何意义如何思考相等向量的坐标必然相等,作向量,则此时我们把有序数对,叫做向量的坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,上式叫做向量的坐标表示那么的几何意义如何思考相等底......”

下一篇
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
1 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
2 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
3 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
4 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
5 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
6 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
7 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
8 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
9 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
10 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
11 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
12 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
13 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
14 页 / 共 22
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
36高中数学 2.3.1平面向量的基本定理及坐标表示(二) 课件 新人教A版必修4.ppt文档
15 页 / 共 22
温馨提示

1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。

2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。

3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。

4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。

5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。

  • 文档助手,定制查找
    精品 全部 DOC PPT RAR
换一批