1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....创设情境•建立直角坐标系•设点•设圆心的位置用坐标,表示,圆的半径为,圆上任意点的坐标设为,•列方程式•由两点间的距离可得学生探索,尝试解决•我们就把方程叫做圆•心半径为的标准方程。•当圆心为半径为时,圆的方程为•信息交流,揭示规律运用规律,解决问题•写出下列各圆的方程•圆心在原点,半径为•圆心为半径为•经过点圆心在,•根据圆的方程写出圆心和半径••,,运用规律,解决问题•写出圆心为半径长等于的圆的方程,并判断点,是否在这个圆上。解圆的方程为把点,坐标带入圆的方程所以点,在圆上。,坐标代入圆的方程所以点,不在圆上。把点,,运用规律,解决问题•的三个顶点的坐标分别为•求它的外接圆的方程。•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程......”。
2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....⊿解解法设所求的圆的标准方程为,将点,和,代入得又圆心在上,所以联立方程组解得所以所求的圆的标准方程为解法二因为,和所以线段的中点坐标为,直线的斜率为,故线段的垂直平分线方程为即由解得因此圆心的坐标为半径,所以所求的圆的方程为圆的标准坐标分别为•求它的外接圆的方程。•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解设所求圆的方程为则解得所求圆的方程为运用规律,解决问题•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解解法设所求的圆的标准方程为,将点,和,代入得又圆心在上,所以联立方程组解得所以所求的圆的标准方程为解法二因为,和所以线段的中点坐标为,直线的斜率为,故线段的垂直平分线方程为即由解得因此圆心的坐标为半径......”。
3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....•当圆心为半径为时,圆的方程为•的方程呢设计问题,创设情境•建立直角坐标系•设点•设圆心的位置用坐标,表示,圆的半径为,圆上任意点的坐标设为,•列方程式•由两点间的距离可得学生探求圆的标准方程的方法待定系数法。要求个圆的标准方程,需要三个条件圆心的横坐标纵坐标和半径。点与圆的位置关系点在圆上,点在圆外,点在圆内。反思小结,观点提炼程的知识,应该求解圆,故线段的垂直平分线方程为即由解得因此圆心的坐标为半径,所以所求的圆的方程为圆的标准方程上,所以联立方程组解得所以所求的圆的标准方程为解法二因为,和所以线段的中点坐标为,直线的斜率为心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解解法设所求的圆的标准方程为,将点,和,代入得又圆心在解设所求圆的方程为则解得所求圆的方程为运用规律......”。
4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....解决问题•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解解法设所求的圆的标准方程为,将点,和,代入得又圆心在上,所以联立方程组解得所以所求的圆的标准方程为解法二因为,和所以线段的中点坐标为,直线的斜率为,故线段的垂直平分线方程为即由解得因此圆心的坐标为半径,所以所求的圆的方程为圆的标准方程求圆的标准方程的方法待定系数法。要求个圆的标准方程,需要三个条件圆心的横坐标纵坐标和半径。点与圆的位置关系点在圆上,点在圆外,点在圆内。反思小结,观点提炼圆的标准方程问题在平面直角坐标系中,两点能确定条直线,点和倾斜角也能确定条直线。那么在平面直角坐标系中确定个圆的几何要素是什么呢设计问题,创设情境问题根据前面我们所学的直线方程的知识,应该求解圆的方程呢设计问题,创设情境•建立直角坐标系•设点•设圆心的位置用坐标,表示,圆的半径为......”。
5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿坐标分别为•求它的外接圆的方程。•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解设所求圆的方程为则解得所求圆的方程为运用规律,解决问题•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解解法设所求的圆的标准方程为,将点,和,代入得又圆心在上,所以联立方程组解得所以所求的圆的标准方程为解法二因为,和所以线段的中点坐标为,直线的斜率为,故线段的垂直平分线方程为即由解得因此圆心的坐标为半径,所以所求的圆的方程为圆的标准方程求圆的标准方程的方法待定系数法。要求个圆的标准方程,需要三个条件圆心的横坐标纵坐标和半径。点与圆的位置关系点在圆上,点在圆外,点在圆内。反思小结,观点提炼程的知识......”。
6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....创设情境•建立直角坐标系•设点•设圆心的位置用坐标,表示,圆的半径为,圆上任意点的坐标设为,•列方程式•由两点间的距离可得学生探索,尝试解决•我们就把方程叫做圆•心半径为的标准方程。•当圆心为半径为时,圆的方程为•信息交流,揭示规律运用规律,解决问题•写出下列各圆的方程•圆心在原点,半径为•圆心为半径为•经过点圆心在,•根据圆的方程写出圆心和半径••,,运用规律,解决问题•写出圆心为半径长等于的圆的方程,并判断点,是否在这个圆上。解圆的方程为把点,坐标带入圆的方程所以点,在圆上。,坐标代入圆的方程所以点,不在圆上。把点,,运用规律,解决问题•的三个顶点的坐标分别为•求它的外接圆的方程。•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程......”。
7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....要求个圆的标准方程,需要三个条件圆心的横坐标纵坐标和半径。点与圆的位置关系点在圆上,点在圆外,点在圆内。反思小结,观点提炼解设所求圆的方程为则解得所求圆的方程为运用规律,解决问题•已知圆上,所以联立方程组解得所以所求的圆的标准方程为解法二因为,和所以线段的中点坐标为,直线的斜率为求圆的标准方程的方法待定系数法。要求个圆的标准方程,需要三个条件圆心的横坐标纵坐标和半径。点与圆的位置关系点在圆上,点在圆外,点在圆内。反思小结,观点提炼程的知识,应该求解圆索,尝试解决•我们就把方程叫做圆•心半径为的标准方程。•当圆心为半径为时,圆的方程为••根据圆的方程写出圆心和半径••,,运用规律,解决问题•写出圆心为半径长等于的圆的方程,并判断点,,运用规律,解决问题•的三个顶点的坐标分别为•求它的外接圆的方程......”。
8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....所以所求的圆的方程为圆的标准坐标分别为•求它的外接圆的方程。•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解设所求圆的方程为则解得所求圆的方程为运用规律,解决问题•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解解法设所求的圆的标准方程为,将点,和,代入得又圆心在上,所以联立方程组解得所以所求的圆的标准方程为解法二因为,和所以线段的中点坐标为,直线的斜率为,故线段的垂直平分线方程为即由解得因此圆心的坐标为半所求的圆的方程为圆的标准方程求圆的标准方程的方法待定系数法。要求个圆的标准方程,需要三个条件圆心的横坐标纵坐标和半径。点与圆的位置关系点在圆上,所以线段的中点坐标为,直线的斜率为,故线段的垂直平分线方程为即由解得因此圆心的坐标为半径,所以,将点,和......”。
9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....•列方程式•由两点间的距离可得学生探索,尝试解决•我们就把方程叫做圆•心半径为的标准方程。•当圆心为半径为时,圆的方程为•信息交流,揭示规律运用规律,解决问题•写出下列各圆的方程•圆心在原点,半径为•圆心为半径为•经过点圆心在,•根据圆的方程写出圆心和半径••,,运用规律,解决问题•写出圆心为半径长等于的圆的方程,并判断点,是否在这个圆上。解圆的方程为把点,坐标带入圆的方程所以点,在圆上。,坐标代入圆的方程所以点,不在圆上。把点,,运用规律,解决问题•的三个顶点的坐标分别为•求它的外接圆的方程。•已知圆心为的圆经过点,和•且圆心在直线上,求圆心为的圆的标准方程。⊿解设所求圆的方程为则解得所求圆的方程为运用规律,解决问题•已知圆心为的圆经过点,和•且圆心在直线上......”。
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。