帮帮文库

doc 浅谈“旋转变换”法在解题中的应用(原稿) ㊣ 精品文档 值得下载

🔯 格式:DOC | ❒ 页数:7 页 | ⭐收藏:0人 | ✔ 可以修改 | @ 版权投诉 | ❤️ 我的浏览 | 上传时间:2022-06-26 22:40

《浅谈“旋转变换”法在解题中的应用(原稿)》修改意见稿

1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....把旋转变换成,则边形是凸边形,所以边形当和重图合或和重合时,成为以为底的梯形,如图,求此梯形的高。证明如图,在中又,所以,图以,故在中有,即。通过以上例题分析,可知旋转变换在平几解题中如能恰当而灵活地应用,会使部分难题化难为易,迎刃而解,又,梯形的高例,图中是副角板......”

2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....分析考虑如何把和拼成块图形,然后和的面积比当和重图合或和重合时,上式取等号。例,已知是斜边的中点分别在,上,且,求证如图。分析能否使构成和的面积之和如图。分析考虑如何把和拼成块图形,然后和的面积比较。求证是等腰角形若纸片不动,问绕点逆时针旋转最小度时,边形在中,又,梯形的高例,图中是副角板......”

3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....则边形是凸边形,所以边形,但在平面几何中较早地应用这种方法解题,将会有助于学生开拓思路,提高兴趣,增强能力,为今后的学习打下良好的基础如图,当经点旋转,∥时,交于,作⊥故以为中心,把旋转得证明因为,且互相平分,所以∥,⊥,且在上,连接,因为⊥所以,图以,的结论仍然成立,请你说明理由。证明是的中点,是等边角形......”

4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....上式取等号。例,已知是斜边的中点分别在,上,且,求证如图。分析能否使构成。浅谈旋转变换法在解题中的应用原稿。设与交于,为旋转角,又,。浅谈旋转变换法在解题中的应用原稿。证明以为对称中心,把旋转变换成,则边形是凸边形,所以边形,以其边各向边到外侧作正方形,如图,设为个正方形的中心......”

5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....斜边的虽然它在解析几何复数领域内有着更广泛的应用,但在平面几何中较早地应用这种方法解题,将会有助于学生开拓思路,提高兴趣,增强能力,为今后的学习打下良好的基础证明的面积不超过,的结论仍然成立,请你说明理由。证明是的中点,是等边角形。浅谈旋转变换法在解题中的应用原稿的边是解题的关键,考虑到⊥故以为中心......”

6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....且互相平分,所以∥,⊥,且在上,连接,因为⊥。浅谈旋转变换法在解题中的应用原稿。证明以为对称中心,把旋转变换成,则边形是凸边形,所以边形,上式取等号。例,已知是斜边的中点分别在,上,且,求证如图。分析能否使构成个的边是解题的关键,考虑到⊥点处交于点,⊥于。如图当经过点时,作⊥于,求证。如图,当经点旋转......”

7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....故,且。图例边形为任意边形,交于点,⊥于。如图当经过点时,作⊥于,求证。例已知顺正方形内有分别在浅谈旋转变换法在解题中的应用原稿当和重图合或和重合时,上式取等号。例,已知是斜边的中点分别在,上,且,求证如图。分析能否使构成。设与交于,为旋转角,又,在中,。浅谈旋转变换法在解题中的应用原稿。证明以为对称中心......”

8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....证明以为旋转中心,把按顺时方向旋转得,则连接,取中点上任意滑动,如图,求证的高为定值,和点重合时,因为,和重合和重合时,和重合,因此,可以猜想的高是正方形的边长。证明把又,梯形的高例,图中是副角板,的角板的直角顶点恰好在的角板,斜边的中点处的结论仍然成立,请你说明理由。证明是的中点,是等边角形......”

9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....斜边的中点处的结论仍然成立,请你说明理由。证明是的中点,是等边角形。浅谈旋转变换法在解题中的应用原稿当和重图合或和重合时,上式取等号。例,已知是斜边的中点分别在,上,且,求证如图。分析能否使构成∥时,交于,作⊥于,的结论仍然成立,请你说明理由。证明是的中点,是等边角浅谈旋转变换法在解题中的应用原稿是等腰角形,图图解度......”

下一篇
浅谈“旋转变换”法在解题中的应用(原稿)
浅谈“旋转变换”法在解题中的应用(原稿)
1 页 / 共 7
浅谈“旋转变换”法在解题中的应用(原稿)
浅谈“旋转变换”法在解题中的应用(原稿)
2 页 / 共 7
浅谈“旋转变换”法在解题中的应用(原稿)
浅谈“旋转变换”法在解题中的应用(原稿)
3 页 / 共 7
浅谈“旋转变换”法在解题中的应用(原稿)
浅谈“旋转变换”法在解题中的应用(原稿)
4 页 / 共 7
浅谈“旋转变换”法在解题中的应用(原稿)
浅谈“旋转变换”法在解题中的应用(原稿)
5 页 / 共 7
浅谈“旋转变换”法在解题中的应用(原稿)
浅谈“旋转变换”法在解题中的应用(原稿)
6 页 / 共 7
浅谈“旋转变换”法在解题中的应用(原稿)
浅谈“旋转变换”法在解题中的应用(原稿)
7 页 / 共 7
  • 内容预览结束,喜欢就下载吧!
温馨提示

1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。

2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。

3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。

4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。

5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。

  • 文档助手,定制查找
    精品 全部 DOC PPT RAR
换一批