帮帮文库

doc TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读 ㊣ 精品文档 值得下载

🔯 格式:DOC | ❒ 页数:16 页 | ⭐收藏:0人 | ✔ 可以修改 | @ 版权投诉 | ❤️ 我的浏览 | 上传时间:2022-06-24 22:53

《TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读》修改意见稿

1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....当,,时,函数达到极小值也可以从作类似讨论得出的极大值和极小值梯度法用梯度法求目标函数在条件函数时,组限制下的极值,方程组,的解,就是所求极值问题的可能极值点其中表示目标函数的梯度向量,,得,且当时当时由元函数取极值的第充分判断法,为最小值点,即在曲线上,取得最小值,最小值,故在上,,即物理学中光的折射定律证明例设定点和位于以平面分开的不同光介质中,从点射出的光线折射后到达点,已知光在两介质中的传播速度分别为求需时最短的传播方式解设到平面的距离为,到平面的距离为,如图,,光线从点射到点所需时间为,光线从点射到点所需时间为且,即问题转化为函数......”

2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....拉格朗日函数为,在点处的切平面为化简,得此平面在三个坐标轴上的截距分别为则此切平面与三坐标面所围成的四面体的体在点处的切平面为化简,得此平面在三个坐标轴上的截距分别为则此切平面与三坐标面所围成的四面体的体积由题意可知,体积存在最小值,要使最小,则需最大即求目标函数在条件下的最大值,其中,拉格朗日函数为,由解得说明以上介绍的两种方法为解多元函数条件极值的常用方法,但在实际解题过程中,我们还可以根据多元函数的些特点选择其它些特殊解法来快速解题,如标准量代换法不等式法二次方程判别式法梯度法数形结合法标准量代换法求些有多个变量的条件极值时,我们可以选取个与这些变量有关的量作为标准量,称其余各量为比较量......”

3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....单位时,成本最低利用条件极值得出利润最大化方案例为销售产品作两种方式广告宣传,当宣传费分别为,时,销售量是,若销售产品所得利润是销量的减去广告费,现要使用广告费万元,应如何分配使广告产生的利润最大,最大利润是多少解依题意,利润函数为且设令得依题设,存在最大利润,又驻点唯,因此两广告分别投入万元和万元利润最大例家电视机厂在对种型号电视机的销售价格决策时面对如下数据根据市场调查,当地对该种电视机的年需求量为万台去年该厂共售出万台,每台售价为元仅生产台电视机的成本为元但在批量生产后,生产万台时成本降低为每台元问在生产方式不变的情况下,每年的最优销售价格是多少数学模型建立如下设这种电视机的总销售量为,每台生产成本为,销售价格为......”

4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....从点射出的光线折射后到达点,已知光在两介质中的传播速度分别为求需时最短的传播方式解设到平面的距离为,到平面的距离为,如图,,光线从点射到点所需时间为,光线从点射到点所需时间为且,即问题转化为函数,在条件下的最小值作拉格朗日函数令或的极值由得这个关于的二次方程要有实数解,必须,即解此关于的二次不等式,得所以,把于的二次方程要有实数解,必须即解关于的二次不等式,得显然,求函数的极值,相当于求,二次方程判别式符号法例若,试求的极值解因为,代入得即这个关时,等号成立即当时......”

5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....求的最值解首先将变形为再设,于是,根据柯西不等式及已知条件,有即当且仅当时,等号成立即当时,当时,,所以,,二次方程判别式符号法例若,试求的极值解因为,代入得即这个关于的二次方程要有实数解,必须即解关于的二次不等式,得显然,求函数的极值,相当于求或的极值由得这个关于的二次方程要有实数解,必须,即解此关于的二次不等式,得所以,把代入,得再把,代入,得,最后把,,代入,得所以,当,,时......”

6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏充分的详细性和完整性。——“.....这样就将其变为研究标准量与辅助量间的关系了如果给定条件是几个变量之和的形式,般设这几个量的算术平均数为标准量例设,求的最小值解取为标准量,令,,则,为任意实数,从而有等号当且仅当,即时成立,所以的最小值为不等式法利用均值不等式均值不等式是常用的不等式,其形式为,这里,且等号成立的充分条件是例已知,,求的极小值解,当且仅当时,等号成立利用柯西不等式柯西不等式对于任意实数,和,总有,,当且仅当实数,与对应成比例时,等号成立运用柯西不等式,主要是把目标函数适当变形,进而配凑成柯西不等式的左边或者右边的形式......”

7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....,所以,已知条件,有即当且仅当的最值解首先将变形为再设,于是,根据柯西不等式及与对应成比例时,等号成立运用柯西不等式,主要是把目标函数适当变形,进而配凑成柯西不等式的左边或者右边的形式,最终求得极大值或极小值例已知,求时,等号成立利用柯西不等式柯西不等式对于任意实数,和,总有,,当且仅当实数,的极小值解,当且仅当利用均值不等式均值不等式是常用的不等式,其形式为,这里,且等号成立的充分条件是例已知,,求,为任意实数......”

8、以下这些语句面临几个显著的问题:标点符号的使用不够规范,影响了句子的正确断句与理解;句子结构方面,表达未能达到清晰流畅的标准,影响阅读体验;此外,还夹杂着一些基本的语法错误——“.....即时成立,所以的最小值为不等式法标准量与辅助量间的关系了如果给定条件是几个变量之和的形式,般设这几个量的算术平均数为标准量例设,求的最小值解取为标准量,令,,则别式法梯度法数形结合法标准量代换法求些有多个变量的条件极值时,我们可以选取个与这些变量有关的量作为标准量,称其余各量为比较量,然后将比较量用标准量与另外选取的辅助量表示出来,这样就将其变为研究,说明以上介绍的两种方法为解多元函数条件极值的常用方法,但在实际解题过程中,我们还可以根据多元函数的些特点选择其它些特殊解法来快速解题,如标准量代换法不等式法二次方程判由解得,体积由题意可知,体积存在最小值,要使最小,则需最大即求目标函数在条件下的最大值......”

9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....即光线的入射角与折射角应满足光的折射定律时光线传播时间最短生产销售在生产和销售商品的过程中,销售价格上涨将使厂家在单位商品上获得的利润增加,但同时也使消费者的购买欲望下降,造成销售量下降,导致厂家消减产量但在规模生产中,单位商品的生产成本是随着产量的增加而降低的,因此销售量成本与售价是相互影响的厂家要选择合理的销售价格才能获得最大利润用条件极值得出生产成本最小化方案例设生产产品需要原料和,它们的单价分别为,用单位原料和单位原料可生产单位的该产品,现要以最低成本生产单位的该产品,问需要多少原料和分析由题意可知,成本函数,该问题是求成本函数在条件下的条件极值问题,利用拉格朗日常数法计算解令解方程组舍去这是实际应用问题......”

10、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....销售量与销售价格之间有下面的关系,这里为市场的最大需求量,是价格系数这个公式也反映出,售价越高,销售量越少同时,生产部门对每台电视机的成本有如下测算这里是只生产台电视机时的成本,是规模系数这也反映出,产量越大即销售量越大,成本越低于是,问题化为求利润函数在约束条件下的极值问题作函数,就得到最优化条件由方程组中第二和第四式得到,即将第四式代入第五式得到再由第式知将所得的这三个式子代入方程组中第三式,得到,由此解得最优价格为。只要确定了规模系数与价格系数,问题就迎刃而解了现在利用这个模型解决本段开始提出的问题此时,由于去年该厂共售出万台,每台售价为元......”

下一篇
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
1 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
2 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
3 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
4 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
5 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
6 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
7 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
8 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
9 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
10 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
11 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
12 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
13 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
14 页 / 共 16
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
TOP20毕业论文《多元函数条件极值的解法与应用》.doc文档免费在线阅读
15 页 / 共 16
温馨提示

1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。

2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。

3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。

4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。

5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。

  • 文档助手,定制查找
    精品 全部 DOC PPT RAR
换一批