的结构形式选择主减速器的基本参数选择与设计计算差速器的设计与计算半轴的设计与计算驱动桥桥壳的受力分析及强度计算用画装配图零件图。第章驱动桥结构方案分析.主减速器的类型由于要求设计的是江淮帅铃的驱动桥,要设计这样个级别的驱动桥,般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是根支撑在左右驱动车轮的刚性空心梁,般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。驱动桥的结构形式有多种,基本形式有三种如下中央单级减速驱动桥。此是驱动桥结构中最为简单的种,是驱动桥的基本形式,在载重汽车中占主导地位。般在主传动比小于的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。中央双级驱动桥。由于中央双级减速桥均是在中央单级桥的速比超出定数值或牵引总质量较大时,作为系列产品而派生出来的种型号,它们很难变型为前驱动桥,使用受到定限制因此,综合来说,双级减速桥般均不作为种基本型驱动桥来发展,而是作为特殊考虑而派生出来的驱动桥存在。中央单级轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田建筑工地矿山等非公路车与军用车上。当前轮边减速桥可分为类类为圆锥行星齿轮式轮边减速桥另类为圆柱行星齿轮式轮边减速驱动桥。综上所述,设计的驱动桥的传动比小于。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势。单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看,重型车产品在主减速比小于的情况下,应尽量选用单级减速驱动桥。.设计驱动桥的基本要求选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。齿轮及其他传动件工作平稳,噪声小。驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左右车轮,另外还承受作用于路面和车架或车身之间的垂直力纵向力和横向力。驱动桥般由主减速器差速器车轮传动装置和驱动桥壳等组成。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮车架及承载式车身经悬架给予的铅垂力纵向力横向力及其力矩,以及冲击载荷驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,还对汽车的行驶性能如动力性经济性平顺性通过性机动性和操作稳定性等有直接影响。本设计参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本设计首先确定主要部件的结构型式和主要设计参数然后参考类似驱动桥的结构,确定出总体设计方案最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。本设计不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为个课题继续研究下去。关键字驱动桥驱动桥单级减速器锥齿轮训练学生的实际工作能力。掌握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成功用工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥般由主减速器,差速器,车轮传动装置和桥壳组成。对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮车架及承载式车身经悬架给予的铅垂力纵向力横向力及其力矩,以及冲击载荷驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在,最大转矩也在•以上,百公里油耗是般都在升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机传动轴驱动桥这动力输送环节中寻找减少能量在传递的过程中的损失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之。所以设计新型的驱动桥成为新的课题。目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。.驱动桥的分类非断开式驱动桥普通非断开式驱动桥,由于结构简单造价低廉工作可靠,广泛用在各种家庭乘用车客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构特别是桥壳结构虽然各不相同,但是有个共同特点,即桥壳是根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的个缺点。驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器越野汽车为了提高离地间隙,可以将对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方有些双层公共汽车为了进步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到个驱动车轮的旁边。在少数具有高速发动机的大型公共汽车多桥驱动汽车和超重型家庭乘用车上,有时采用蜗轮式主减速器,它不仅具有在质量小尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器差速器与传动轴及部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的部分轿车及些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。多桥驱动的布置为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳半轴等主要零件不能通用。而对汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。在贯通式驱动桥的布置中,各桥的传动轴布置在同纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构减小了体积和质量。这对于汽车的设计如汽车的变型制造和维修,都带来方便。.主要内容驱动桥和主减速器差速器半轴驱动桥桥壳的结构形式选择主减速器的基本参数选择与设计计算差速器的设计与计算半轴的设计与计算驱动桥桥壳的受力分析及强度计算用画装配图零件图。第章驱动桥结构方案分析.主减速器的类型由于要求设计的是江淮帅铃的驱动桥,要设计这样个级别的驱动桥,般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是根支撑在左右驱动车轮的刚性空心梁,般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。驱动桥的结构形式有多种,基本形式有三种如下中央单级减速驱动桥。此是驱动桥结构中最为简单的种,是驱动桥的基本形式,在载重汽车中占主导地位。般在主传动比小于的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。中央双级驱动桥。由于中央双级减速桥均是在中央单级桥的速比超出定数值或牵引总质量较大时,作为系列产品而派生出来的种型号,它们很难变型为前驱动桥,使用受到定限制因此,综合来说,双级减速桥般均不作为种基本型驱动桥来发展,而是作为特殊考虑而派生出来的驱动桥存在。中央单级轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田建筑工地矿山等非公路车与军用车上。当前轮边减速桥可分为类类为圆锥行星齿轮式轮边减速桥另类为圆柱行星齿轮式轮边减速驱动桥。综上所述,设计的驱动桥的传动比小于。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势。单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看,重型车产品在主减速比小于的情况下,应尽量选用单级减速驱动桥。.设计驱动桥的基本要求选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。齿轮及其他传动件工作平稳,噪声小。在各种载荷和转速工况下有较高的传动效率。具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。与悬架导向机构运动协调。结构简单,加工工艺性好,制造容易,维修,调整方便。驱动桥的结构型式按工作特性分,可以归并为两大类,
(图纸) 半轴A1.dwg
(图纸) 半轴齿轮A2.dwg
(图纸) 差速器左壳A2.dwg
(图纸) 从动齿轮A1.dwg
(其他) 答辩相关材料.doc
(其他) 封皮.doc
(其他) 江淮帅铃汽车驱动桥设计开题报告.doc
(其他) 江淮帅铃汽车驱动桥设计说明书.doc
(其他) 目 录.doc
(图纸) 驱动桥装配图A0加长版.dwg
(其他) 任务书.doc
(其他) 设计说明封皮.doc
(图纸) 十字轴A2.dwg
(图纸) 行星齿轮A2.dwg
(其他) 摘 要.doc
(图纸) 主动锥齿轮A2.dwg