良好的性能。对于语音激活检测在语音增强中的应用,为了得到更多的关于背景噪声特性,语音端点检测更注重于如何准确的检测出无音段。般的语音激活检测是根据语音帧来进行的,语音帧的长度在不等。语音端点检测的方法可以综述为从输入信号中提取个或系列的对比特征参数,然后将其和个或系列的门限阈值进行比较,如图所示。如果超过门限则表示当前为有音段,否则就表示当前为无音段。图语音激活因录音时是立体声,故取其中的第通道的音频数据对进行点傅里叶变换原始信号波形原始信号频谱原始信号幅值原始信号相位其仿真图如图所示。前面读取的语音信号声音比较清晰,信噪比较高,用这样的信号实验对比效果不太明显。因此在进行消除噪声实验之前我们要人为的给原始信号添加随机白高斯噪声,降低语音信号的信噪比。下面是加入噪声的源代码因录音时是立体声,故取其中的第通道的音频数据设定噪声的频率为设置噪声的长度跟原语音信样长产生幅度为频率为的正弦波作为噪声将原语音信号跟噪声相加,为带有噪声的语音信号将带有噪声的语音信号转换为声音,中将有噪声下面是加噪后音频的仿真源代码因录音时是立体声,故取其中的第通道的音频数据对进行点傅里叶变换加噪后信号检测框图目前语音端点检测所采取的方法大体可以分为两类加窗分帧特征提取与阀值比较判断有无语音带噪语音第类是噪声环境下基于模型的语音信号端点检测的方法,该方法要求背景噪声保持平稳且信噪比较高。第二类方法是基于信号的短时能量进行检测的算法,它通过对背景噪声能量的统计,定出能量门限,利用能量门限来确定语音信号起始点。在这里运用语音端点检测采用了第二类方法,即基于信号的短时能量进行检测的算法。基于信号的短时能量检测具体算法如下计算每帧的语音能量式中为帧长,为帧的编号,为每帧中的各点,,为帧数然而它有个缺陷,即它对高电平非常敏感信号的二入了图书馆的电子资源各个网站,看到了关于谱减法的相关的资料,关于降噪的相关的技术现在应该普遍在应用。我看到了,感觉比较感兴趣,于是就选了这个题目。题目选好了,但真正难的是做。这个题目是基于软件的,虽然用过,但很不熟悉,对于的编程时基本不懂,只有重新学了,又到图书馆借了本教程,并且到网上找些相关的信息。还好我有点语言的基础,学起由于基本假定是噪声信号与语音信号是加性的,和独立,所以和也独立。故。所以对个分析帧内得短时平稳过程,有因为噪声是局部平稳的,故可以认为没有语音信息是的噪声与有语音信息时的噪声功率谱是相同的,因而可以利用发语音前的寂静帧来估计噪声。由式可以得到原始语音的估计值式中,下标表示加窗信号,表示估值,则表示无语音信号时的均值。如果式中结果出现负值,则将其改为或改变符号,因为功率谱不能为负数。由式可得原始语音估值根据人耳对语音的相位变化不敏感这特点,我们可以用原带噪语音信号的相位来代替估计之后的语音信号的相位,将估计后的频域信号进行逆傅次方计算。为此,定义短时平均幅度函数来表征帧语音信号的能量大小,定义计算前帧平均噪声能量求能量最大值和能量最小值根据式确定门限,应用谱相减法实现语音增强基本原理是通过对带噪语音谱减去噪声谱得到语音谱,因此,语音激活检测这环节非常重要,准确地确定语音的起始点和终止点对噪声谱估计有着重要的作用。改进型语音降噪处理运用端点检测技术,用仿真,可明显显示出其优越性。用仿真的流程如下对输入的语音信号进行预滤波对滤波后的语音信号进行预加重将语音信号按每帧个信号点进行分帧,帧移为对信波形加噪后信号频谱加噪后信号幅值加噪后信号相位其仿真图如图二所示。下面是噪声的仿真的源代码读取文件并返回和的值。截取语音信息前点作为噪声信号对噪声信号进行傅里叶变换取噪声功率谱绝对值取噪声相位噪声信号波形噪声信号频谱噪声信号幅值噪声信号相位其仿真的图形如图三所示。下面是利用基本谱减法降噪处理源代码,下面是利用改进的谱减法降噪处理的源代码相对更容易点,但也有不小的难度。处理宽带噪声的最通用技术是谱相减法,即从带噪语音估值中减去噪声频谱估值,从而得到纯净语音的频谱。谱相减方法是基于人的感觉特性,即语音信号的短时幅度比短时相位更容易对人的听觉系统产生影响,从而对语音短时幅度谱进行估计,适用于受加性噪声污染的语音。在这里我要感谢老师的悉心的指导,同学们的帮助,还有网上技术论坛的朋友们,没有你们我很难完成这次课程设计,我在你们身上也学到了很多东西,让我生受益。设定和的值增强后语音以为文件名保存其降噪后的仿真图形如图四所示。设计结果和仿真波形图图二图三图四参考文献程佩青数字信号处理教程清华大学出版社吴镇扬数字信号处理高等教育出版社胡广书数字信号处理导论清华大学出版社易克初田斌付强语音信号处理国防工业出版社刘保柱苏彦华张宏林从入门到精通人民邮电出版社罗军辉罗勇江在数字信号处理中的应用机械工业出版社周辉董正宏数字信号处理基础及实现北京希望电子出版社设计心得体会经过两周的数字信号处理课程设计,让我学到了很多东西。其实我刚开始看到老师给的任务要求时我很茫然,不知道该干嘛,就连选题都不知道怎么选,虽然我学了数字信号处理这门课,但也只是理论上了解点,在脑海中还是没有个实质的概念。不会做我就只有上网去找相关的资料,参考别人做的报告,看看别人是如何做的,有点启发,但还是不知道自己改选什么题目。后来我又到图书馆借阅相关书籍,也进里叶变换得到降噪后的语音时域信号。基本谱减法的原理图如图所示带噪语音相位增强插入相位噪声方差图基本谱减法的原理示意图改进谱减法消除噪声的原理传统的噪声估计方法是基于最优平滑和最小统计的噪声估计,还有种采用改进的算法基于语音活性检测的噪声估计算法。语音激活检测指从段包含语音信号中确定出语音的起始点和终点,又称端点检测。语音端点检测的目的就是从连续记录的带噪语音信号中分离出有用的语音信号。语音激活检测是各种语音处理中必需的个重要环节,精确地确定输入语音的起点和终点将保证语音处理系统号帧大输入阻抗为,分辨率为。将接收的模拟信号转换成位二进制的数字量,并以补码的形式存于位数据寄存器中,数值为,传输速率,综合精度为量程的。的工作电压为,模拟量与数字量之间采用光电隔离技术,但各通道之间没有隔离。它消耗主单元或有源扩展单元电源槽的电流。它占用基本单元的个映像表,即软件上占个点数,在计算的时,可以将这个点作为的输入点来计算。模块内部有个数据缓冲寄存器,它由个位的寄存器组成,其内容可以通过的和指令来读出或写入。模块的接线方式模拟量输入通过双绞屏蔽电缆来接收,电缆应远离电源线或其他可能产生电气干扰的电线,如图如果电压输入有电压波动,或外部接线中有电气干扰,可以接个平滑电容器如图如果使用电流输入,将和短接,如图如果存在过多的电气干扰,连接的外壳地端和模块的接地端,如图④连接模块的接地端与主单元的接地端,在可行的情况下使用三级接地,如图。缓冲寄存器及设置模拟量输入输入模块的缓冲寄存器,是特殊功能模块工作设定与主机通讯用的数据中介单元,时指令读和写操作目标。的缓冲寄存器区由个位的寄存器组成,编号为。模块分配表内容初始化通道平均值采样次数取值范围默认值为分别存放个通道的平均值分别存放个通道的当前值保留转换速度的设置当设置为时,转换速度为当设置为时,转换速度为恢复到默认值或调整值禁止零点合增益调整零点和增益调整零点值增益值保留出错信息识别码不能使用在号中写入十六进制四位数字使各通道初始化,最低位数字控制通道,最高位数字控制。中每位数值表示的含义如下位设定输入范围位设定输入范围位设定输入范围位关闭该通道的分别置为,则增益和零点的设定值禁止改动。要改动时必须设置为。缺省设定为。检测参数设置口设计口地址表地址元件注释主电源相朋友给了我无言的帮助,我要向所有帮助过我的老师同学表示衷心的感谢,同时也感谢学院为我提供良好的做毕业设计的环境。我要特别感谢我的指导老师的热情关怀和悉心指导。在这里请接受我诚挚谢意,在我撰写论文的过程中,老师倾注了大量的心血和汗水。从写作提纲,到遍又遍地指出每稿中的具体问题,严格把关,循循善诱,从开题报告的修改论文的架构拟定到最终定稿,他给予了殷切的指导,提出了许多宝贵的意见。在此我表示衷心感谢。无论是在论文的选题构思和资料的收集方面,还是在论文的研究方法以及成文定稿方面,我都得到了老师悉心细致的教诲和无私的帮助,特别是他广博的学识严谨的治学精神和丝不苟的工作作风使我受益匪浅,在此表示真诚地感谢和深深的谢意。写作毕业论文是次再系统学习的过程,毕业论文的完成,同样也意味着新的学习生活的开始。最后要感谢的是我的父母,他们不仅培养了我对中国传统文化的浓厚的兴趣,让我在漫长的人生旅途中使心灵有了虔敬的归依,而且也为我能够顺利的完成毕业论文提供了巨大的支持与帮助。在未来的日子里,我会更加努力的学习和工作,不辜负父母对我的殷殷期望,我定会好好孝敬和报答他们,最后再次感谢所有在毕业设计中曾经帮助过我的良师益友和同学,以及在设计中被我引用或参考的论著的作者。良好的性能。对于语音激活检测在语音增强中的应用,为了得到更多的关于背景噪声特性,语音端点检测更注重于如何准确的检测出无音段。般的语音激活检测是根据语音帧来进行的,语音帧的长度在不等。语音端点检测的方法可以综述为从输入信号中提取个或系列的对比特征参数,然后将其和个或系列的门限阈值进行比较,如图所示。如果超过门限则表示当前为有音段,否则就表示当前为无音段。图语音激活因录音时是立体声,故取其中的第通道的音频数据对进行点傅里叶变换原始信号波形原始信号频谱原始信号幅值原始信号相位其仿真图如图所示。前面读取的语音信号声音比较清晰,信噪比较高,用这样的信号实验对比效果不太明显。因此在进行消除噪声实验之前我们要人为的给原始信号添加随机白高斯噪声,降低语音信号的信噪比。下面是加入噪声的源代码因录音时是立体声,故取其中的第通道的音频数据设定噪声的频率为设置噪声的长度跟原语音信样长产生幅度为频率为的正弦波作为噪声将原语音信号跟噪声相加,为带有噪声的语音信号将带有噪声的语音信号转换为声音,中将有噪声下面是加噪后音频的仿真源代码因录音时是立体声,故取其中的第通道的音频数据对进行点傅里叶变换加噪后信号检测框图目前语音端点检测所采取的方法大体可以分为两类加窗分帧特征提取与阀值比较判断有无语音带噪语音第类是噪声环境下基于模型的语音信号端点检测的方法,该方法要求背景噪声保持平稳且信噪比较高。第二类方法是基于信号的短时能量进行检测的算法,它通过对背景噪声能量的统计,定出能量门限,利用能量门限来确定语音信号起始点。在这里运用语音端点检测采用了第二类方法,即基于信号的短时能量进行检测的算法。基于信号的短时能量检测具体算法如下计算每帧的语音能量式中为帧长,为帧的编号,为每帧中的各点,,为帧数然而它有个缺陷,即它对高电平非常敏感信号的二入了图书馆的电子资源各个网站,看到了关于谱减法的相关的资料,关于降噪的相关的技术现在应该普遍在应用。我看到了,感觉比较感兴趣,于是就选了这个题目。题目选好了,但真正难的是做。这个题目是基于软件的,虽然用过,但很不熟悉,对于的编程时基本不懂,只有重新学了,又到图书馆借了本教程,并且到网上找些相关的信息。还好我有点语言的基础,学起由于基本假定是噪声信号与语音信号是加性的,和独立,所以和也独立。故。所以对个分析帧内得短时平稳过程,有因为噪声是局部平稳的,故可以认为没有语音信息是的噪声与有语音信息时的噪声功率谱是相同的,因而可以利用发语音前的寂静帧来估计噪声。由式可以得到原始语音的估计值式中,下标表示加窗信号,表示估值,则表示无语音信号时的均值。如果式中结果出现负值,则将其改为或改变符号,因为功率谱不能为负数。由式可得原始语音估值根据人耳对语音的相位变化不敏感这特点,我们可以用原带噪语音信号的相位来代替估计之后的语音信号的相位,将估计后的频域信号进行逆傅
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。